SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Affolter Stéphane) "

Sökning: WFRF:(Affolter Stéphane)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fischer, Hubertus, et al. (författare)
  • Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond
  • 2018
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:7, s. 474-485
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 3.5 million years, there have been several intervals when climate conditions were warmer than during the pre-industrial Holocene. Although past intervals of warming were forced differently than future anthropogenic change, such periods can provide insights into potential future climate impacts and ecosystem feedbacks, especially over centennial-to-millennial timescales that are often not covered by climate model simulations. Our observation-based synthesis of the understanding of past intervals with temperatures within the range of projected future warming suggests that there is a low risk of runaway greenhouse gas feedbacks for global warming of no more than 2 °C. However, substantial regional environmental impacts can occur. A global average warming of 1–2 °C with strong polar amplification has, in the past, been accompanied by significant shifts in climate zones and the spatial distribution of land and ocean ecosystems. Sustained warming at this level has also led to substantial reductions of the Greenland and Antarctic ice sheets, with sea-level increases of at least several metres on millennial timescales. Comparison of palaeo observations with climate model results suggests that, due to the lack of certain feedback processes, model-based climate projections may underestimate long-term warming in response to future radiative forcing by as much as a factor of two, and thus may also underestimate centennial-to-millennial-scale sea-level rise.
  •  
2.
  • Samuel, Tinu Mary, et al. (författare)
  • Subclinical Mastitis in a European Multicenter Cohort : Prevalence, Impact on Human Milk (HM) Composition, and Association with Infant HM Intake and Growth
  • 2020
  • Ingår i: Nutrients. - : MDPI. - 2072-6643. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Subclinical mastitis (SCM) is an inflammatory condition of the mammary gland. We examined the effects of SCM on human milk (HM) composition, infant growth, and HM intake in a mother–infant cohort from seven European countries. Methods: HM samples were obtained from 305 mothers at 2, 17, 30, 60, 90, and 120 days postpartum. SCM status was assessed using HM Sodium (Na): Potassium (K) ratio >0.6. Levels of different macro- and micronutrients were analyzed in HM. Results: SCM prevalence in the first month of lactation was 35.4%. Mean gestational age at delivery was lower and birth by C-section higher in SCM mothers (p ≤ 0.001). HM concentrations of lactose, DHA, linolenic acid, calcium, and phosphorous (p < 0.05 for all) was lower, while total protein, alpha-lactalbumin, lactoferrin, albumin, arachidonic acid to DHA ratio, n-6 to n-3 ratio and minerals (iron, selenium, manganese, zinc, and copper) were higher (p < 0.001 for all) in mothers with SCM. There were no differences in infant growth and HM intake between non-SCM and SCM groups. Conclusion: We document, for the first time, in a large European standardized and longitudinal study, a high prevalence of SCM in early lactation and demonstrate that SCM is associated with significant changes in the macro- and micronutrient composition of HM. Future studies exploring the relation of SCM with breastfeeding behaviors and developmental outcomes are warranted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy