SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aghelpour Pouya) "

Sökning: WFRF:(Aghelpour Pouya)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aghelpour, Pouya, et al. (författare)
  • A novel hybrid dragonfly optimization algorithm for agricultural drought prediction
  • 2021
  • Ingår i: Stochastic Environmental Research and Risk Assessment. - : Springer Science and Business Media LLC. - 1436-3240 .- 1436-3259. ; 35, s. 2459-2477
  • Tidskriftsartikel (refereegranskat)abstract
    • Palmer Drought Severity Index (PDSI) is known as a robust agricultural drought index since it considers the water balance conditions in the soil. It has been widely used as a reference index for monitoring agricultural drought. In this study, the PDSI time series were calculated for nine synoptic stations to monitor agricultural drought in semi-arid region located at Zagros mountains of Iran. Autoregressive Moving Average (ARMA) was used as the stochastic model while Radial Basis Function Neural Network (RBFNN) and Support Vector Machine (SVM) were applied as Machine Learning (ML)-based techniques. According to the time series analysis of PDSI, for the driest months the most PDSI drought events are normal drought and mild drought conditions. As an innovation, Dragonfly Algorithm (DA) was used in this study to optimize the SVM’s parameters, called as the hybrid SVM-DA model. It is worthy to mention that the hybrid SVM-DA is developed as a meta-innovative model for the first time in hydrological studies. The novel hybrid SVM-DA paradigm could improve the SVM’s accuracy up to 29% in predicting PDSI and therefore was found as the superior model. The best statistics for this model were obtained as Root Mean Squared Error (RMSE) = 0.817, Normalized RMSE (NRMSE) = 0.097, Wilmott Index (WI) = 0.940, and R = 0.889. The Mean Absolute Error values of the PDSI predictions via the novel SVM-DA model were under 0.6 for incipient drought, under 0.7 for mild and moderate droughts. In general, the error values in severe and extreme droughts were more than the other classes; however, the hybrid SVM-DA was the best-performing model in most of the cases.
  •  
2.
  • Aghelpour, Pouya, et al. (författare)
  • Evaluating Three Supervised Machine Learning Algorithms (LM, BR, and SCG) for Daily Pan Evaporation Estimation in a Semi-Arid Region
  • 2022
  • Ingår i: Water (Switzerland). - : MDPI AG. - 2073-4441. ; 14:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Evaporation is one of the main components of the hydrological cycle, and its estimation is crucial and important for water resources management issues. Access to a reliable estimator tool for evaporation simulation is important in arid and semi-arid areas such as Iran, which lose more than 70% of their received precipitation by evaporation. Current research employs the Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) algorithms for training the Multilayer Perceptron (MLP) model (as MLP-BR and MLP-SCG) and comparing their performance with the Levenberg–Marquardt (LM) algorithm (as MLP-LM). For this purpose, 16 meteorological variables were used on a daily scale; including temperature (5 variables), air pressure (4 variables), and relative humidity (6 variables) as input data sets, and pan evaporation as the target variable of the MLP model. The surveys were conducted during the period of 2006–2021 in Fars Province in Iran, which is a semi-arid region and has many natural lakes. Various combinations of input-target pairs were tested by several learning algorithms, resulting in seven input scenarios: (1) temperature-based (T), (2) pressure-based (F), (3) humidity-based (RH), (4) temperature–pressure-based (T-F), (5) temperature–humidity-based (T-RH), (6) pressure–humidity-based (F-RH) and (7) temperature–pressure–humidity-based (T-F-RH). The results indicated the relative superiority of the three-component scenario of T-F-RH, and a considerable weakness in the single-component scenario of RH compared with others. The best performance with a root mean square error (RMSE) equal to 1.629 and 1.742 mm per day and a Wilmott Index (WI) equal to 0.957 and 0.949 (respectively for validation and test periods) belonged to the MLP-BR model. Additionally, the amount of R2 (greater than 84%), Nash-Sutcliff efficiency (greater than 0.8) and normalized RMSE (less than 0.1) all indicate the reliability of the estimates provided for the daily pan evaporation. In the comparison between the studied training algorithms, two algorithms, BR and SCG, in most cases, showed better performance than the powerful and common LM algorithm. The obtained results suggest that future researchers in this field consider BR and SCG training algorithms for the supervised training of MLP for the numerical estimation of pan evaporation by the MLP model.
  •  
3.
  • Mokhtar, Ali, et al. (författare)
  • Prediction of Irrigation Water Requirements for Green Beans-Based Machine Learning Algorithm Models in Arid Region
  • 2023
  • Ingår i: Water resources management. - : Springer. - 0920-4741 .- 1573-1650. ; 37, s. 1557-1580
  • Tidskriftsartikel (refereegranskat)abstract
    • Water scarcity is the most obstacle faced by irrigation water requirements, likewise, limited available meteorological data to calculate reference evapotranspiration. Consequently, the focal aims of the investigation are to assess the potential of machine learning models in forecasting irrigation water requirements (IWR) of snap beans by evolving multi-scenarios of inputs parameters to figure out the impact of meteorological, crop, and soil parameters on IWR. Six models were applied, support vector regressor (SVR), random forest (RF), deep neural networks (DNN), convolutional neural networks (CNN), long short-term memory (LSTM), and Hybrid CNN-LSTM. Ten variables including maximum and minimum temperature, Relative humidity, wind speed, precipitation, root depth, basal crop coefficient, soil evaporation, a fraction of surface wetted and, exposed and soil wetted fraction were used as the input data for models with their combination, 8 input scenarios were designed. Overall models, the best scenario was scenario 4 (relative humidity, wind speed, basal crop coefficient, soil evaporation), however, the best scenario for DNN and RF model was scenario 7 (root depth, basal crop coefficient, soil evaporation, fraction of surface wetted, exposed and soil wetted fraction). While the weakest one was the group of climatic factors in scenario 6 (maximum temperature, minimum temperature, relative humidity, wind speed, and precipitation). Among the models, the hybrid LTSM & CNN was the most accurate and the SVR model had the lowest estimation accuracy. The outcomes of this research work could set up a modeling strategy that would set in motion the improvement of efforts to identify the shortages in IWR forecasting, which sequentially may support alleviation strategies such as policies for sustainable water use and water resources management. The current approach was promising and has research value for other similar regions. 
  •  
4.
  • Raza, Ali, et al. (författare)
  • Misconceptions of Reference and Potential Evapotranspiration: A PRISMA-Guided Comprehensive Review
  • 2022
  • Ingår i: Hydrology. - : MDPI. - 2306-5338. ; 9:9
  • Forskningsöversikt (refereegranskat)abstract
    • One of the most important parts of the hydrological cycle is evapotranspiration (ET). Accurate estimates of ET in irrigated regions are critical to the planning, control, and regulation of agricultural natural resources. Accurate ET estimation is necessary for agricultural irrigation scheduling. ET is a nonlinear and complex process that cannot be calculated directly. Reference evapotranspiration (RET) and potential evapotranspiration (PET) are two primary forms of ET. The ideas, equations, and application areas for PET and RET are different. These two terms have been confused and used interchangeably by researchers. Therefore, terminology clarification is necessary to ensure their proper use. The research indicates that PET and RET concepts have a long and distinguished history. Thornthwaite devised the original PET idea, and it has been used ever since, although with several improvements. The development of RET, although initially confused with that of PET, was formally defined as a standard method. In this study, the Preferred Reporting Item for Systematic reviews and Meta-Analysis (PRISMA) was used. Equations for RET estimation were retrieved from 44 research articles, and equations for PET estimation were collected from 26 studies. Both the PET and RET equations were divided into three distinct categories: temperature-based, radiation-based, and combination-based. The results show that, among temperature-based equations for PET, Thornthwaite's (1948) equation was mentioned in 12,117 publications, whereas among temperature-based equations for RET, Hargreaves and Samani's (1985) equation was quoted in 3859 studies. Similarly, Priestley (1972) had the most highly cited equation in radiation-based PET equations (about 6379), whereas Ritchie (1972) had the most highly cited RET equations (around 2382) in radiation-based equations. Additionally, among combination-based PET equations, Penman and Monteith's (1948) equations were cited in 9307 research studies, but the equations of Allen et al. (1998) were the subject of a significant number of citations from 23,000 publications. Based on application, PET is most often applied in the fields of hydrology, meteorology, and climatology, whereas RET is more frequently utilized in the fields of agronomy, agriculture, irrigation, and ecology. PET has been used to derive drought indices, whereas RET has been employed for single crop and dual crop coefficient approaches. This work examines and describes the ideas and methodologies, widely used equations, applications, and advanced approaches associated with PET and RET, and discusses future enhancements to increase the accuracy of ET calculation to attain accurate agricultural irrigation scheduling. The use of advanced tools such as remote sensing and satellite technologies, in addition to machine learning algorithms, will help to improve the accuracy of PET and RET estimates. Researchers will be able to distinguish between PET and RET in the future with the use of the study's results.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy