SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Agresti F.) "

Sökning: WFRF:(Agresti F.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Battiston, S., et al. (författare)
  • Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials
  • 2013
  • Ingår i: Journal of Electronic Materials. - New York : Springer. - 0361-5235 .- 1543-186X. ; 42:7, s. 1956-1959
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1:x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density > 95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600A degrees C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600A degrees C.
  •  
2.
  • Famengo, A., et al. (författare)
  • Phase Content Influence on Thermoelectric Properties of Manganese Silicide-Based Materials for Middle-High Temperatures
  • 2013
  • Ingår i: Journal of Electronic Materials. - New York : Springer. - 0361-5235 .- 1543-186X. ; 42:7, s. 2020-2024
  • Tidskriftsartikel (refereegranskat)abstract
    • The higher manganese silicides (HMS), represented by MnSi (x) (x = 1.71 to 1.75), are promising p-type leg candidates for thermoelectric energy harvesting systems in the middle-high temperature range. They are very attractive as they could replace lead-based compounds due to their nontoxicity, low-cost starting materials, and high thermal and chemical stability. Dense pellets were obtained through direct reaction between Mn and Si powders during the spark plasma sintering process. The tetragonal HMS and cubic MnSi phase amounts and the functional properties of the material such as the Seebeck coefficient and electrical and thermal conductivity were evaluated as a function of the SPS processing conditions. The morphology, composition, and crystal structure of the samples were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction analyses, respectively. Differential scanning calorimetry and thermogravimetric analysis were performed to evaluate the thermal stability of the final sintered material. A ZT value of 0.34 was obtained at 600A degrees C for the sample sintered at 900A degrees C and 90 MPa with 5 min holding time.
  •  
3.
  • Fiameni, S., et al. (författare)
  • Effect of Synthesis and Sintering Conditions on the Thermoelectric Properties of n-Doped Mg2Si
  • 2014
  • Ingår i: Journal of Electronic Materials. - : Springer Science and Business Media LLC. - 0361-5235 .- 1543-186X. ; 43:6, s. 2301-2306
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion in the middle-high temperature range. The detrimental effect of the presence of MgO on the TE properties of Mg2Si based materials is widely known. For this reason, the conditions used for synthesis and sintering were optimized to limit oxygen contamination. The effect of Bi doping on the TE performance of dense Mg2Si materials was also investigated. Synthesis was performed by ball milling in an inert atmosphere starting from commercial Mg2Si powder and Bi powder. The samples were consolidated, by spark plasma sintering, to a density > 95%. The morphology, and the composition and crystal structure of samples were characterized by field-emission scanning electronic microscopy and x-ray diffraction, respectively. Moreover, determination of Seebeck coefficients and measurement of electrical and thermal conductivity were performed for all the samples. Mg2Si with 0.1 mol% Bi doping had a ZT value of 0.81, indicative of the potential of this method for fabrication of n-type bulk material with good TE performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy