SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahmed Hytham) "

Sökning: WFRF:(Ahmed Hytham)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Hytham, et al. (författare)
  • Determination and Pharmacokinetics of Omeprazole Enantiomers in Human Plasma and Oral Fluid Utilizing Microextraction by Packed Sorbent and Liquid Chromatography-Tandem Mass Spectrometry
  • 2021
  • Ingår i: International Journal of Analytical Chemistry. - : Hindawi Publishing Corporation. - 1687-8760 .- 1687-8779. ; 2021
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present work, the determination of omeprazole (OME) enantiomers in oral fluid and plasma samples was carried out utilizing microextraction by packed sorbent (MEPS) and liquid chromatography-tandem mass spectrometry. A chiral column with cellulose-SB phase was used for the first time for enantiomeric separation of OME with an isocratic elution system using 0.2% ammonium hydroxide in hexane-ethanol mixture (70 : 30, v/v) as the mobile phase. OME enantiomers were determined utilizing a triple quadrupole tandem mass spectrometer in positive ion mode (ESI+) monitoring mass transitions: m/z 346.3 -> 198.0 for OME and m/z 369.98 -> 252.0 for internal standard. The limits of detection and quantification of the present method for both enantiomers were 0.1 and 0.4 ng/mL, respectively. The method validation provided good accuracy and precision. The matrix effect factor was less than 5%, and no interfering peaks were observed. The interday precision values ranged from 2.2 to 7.5 (%RSD), and the accuracy of determinations varied from -9.9% to 8.3%. In addition, the pharmacokinetics (PK) of omeprazole enantiomers in healthy subjects after a single oral dose was investigated. (S)-Enantiomers showed higher levels than (R)-enantiomers throughout 24 h. It was found that the mean maximum concentrations of (R)- and (S)-omeprazole in plasma samples were about two times higher than in oral fluid.
  •  
2.
  • Elmongy, Hatem, et al. (författare)
  • Determination of metoprolol enantiomers in human plasma and saliva samples utilizing microextraction by packed sorbent and liquid chromatography-tandem mass spectrometry
  • 2016
  • Ingår i: BMC Biomedical chromotography. - : Wiley. - 0269-3879 .- 1099-0801. ; 30:8, s. 1309-1317
  • Tidskriftsartikel (refereegranskat)abstract
    • A sensitive, accurate and reliable bioanalytical method for the enantioselective determination of metoprolol in plasma and saliva samples utilizing liquid chromatography-electrospray ionization tandem mass spectrometry was developed and validated. Human plasma and saliva samples were pretreated by microextraction by packed sorbent (MEPS) prior to analysis. A new MEPS syringe form with two inputs was used. Metoprolol enantiomers and internal standard pentycaine (IS) were eluted from MEPS sorbent using isopropanol after removal of matrix interferences using aliquots of 5% methanol in water. Complete separation of metoprolol enantiomers was achieved on a Cellulose-SB column (150x4.6mm, 5m) using isocratic elution with mobile phase 0.1% ammonium hydroxide in hexane-isopropanol (80:20, v/v) with a flow rate of 0.8mL/min. A post-column solvent-assisted ionization was applied to enhance metoprolol ionization signal in positive mode monitoring (+ES) using 0.5% formic acid in isopropanol at a flow rate of 0.2mL/min. The total chromatographic run time was 10min for each injection. The detection of metoprolol in plasma and saliva samples was performed using triple quadrupole tandem mass spectrometer in +ES under the following mass transitions: m/z 268.0872.09 for metoprolol and m/z 303.3154.3 for IS. The linearity range was 2.5-500ng/mL for both R- and S-metoprolol in plasma and saliva. The limits of detection and quantitation for both enantiomers were 0.5 and 2.5ng/mL respectively, in both matrices (plasma and saliva). The intra- and inter-day precisions were presented in terms of RSD values for replicate analysis of quality control samples and were <5%; the accuracy of determinations varied from 96 to 99%. The method was able to determine the therapeutic levels of metoprolol enantiomers in both human plasma and saliva samples successfully, which can aid in therapeutic drug monitoring in clinical laboratories.
  •  
3.
  • Elmongy, Hatem, et al. (författare)
  • Online post-column solvent assisted and direct solvent-assisted electrospray ionization for chiral analysis of propranolol enantiomers in plasma samples
  • 2015
  • Ingår i: Journal of Chromatography A. - : Elsevier BV. - 0021-9673 .- 1873-3778. ; 1418, s. 110-118
  • Tidskriftsartikel (refereegranskat)abstract
    • An Online post-column solvent-assisted ionization (OPSAI) method was developed for enhancing the ionization of the beta-blocker propranolol utilizing normal phase LC-MS/MS. Solvent-assisted electrospray ionization (SAESI) was studied by the introduction of the assistant solvents A: 0.5% Formic acid in Isopropanolol, B: 0.5% Formic acid in lsopropanolol-Water (1:1), and C: 0.5% Formic acid in water into the electrospray ionization chamber using a spray needle. Analyte molecules can be directly ionized by the aid of the assistant solvent spray. Both methods were applied to the chiral separation of propranolol enantiomers using normal phase analysis on cellulose-based chiral column. Interestingly, both methods are easy to handle and offer a wide range of assistant solvents that can be used in order to gain the optimum ionization of the analyte molecules. The both methods considerably improved the analyte signal and the peak area greatly increased. The propranolol average signal-to-noise (S/N) ratio was enhanced from 26 +/- 1 and 42 +/- 1 to 2341 +/- 61 and 1725 +/- 29 for R-propranolol and S-propranolol, respectively, when the post-column solvent method (OPSAI) was used with isopropanol-assistant solvent (A). While in case of solvent-assisted electrospray ionization method (SAESI) signal was enhanced from 26 +/- 1 and 42 +/- 1 to 2223 +/- 72 and 2155 +/- 58 for R-propranolol and S-propranolol, respectively, with water as an assistant solvent. The limit of detection was 10 ng/mL and the method was linear in the range 50-2000 ng/mL. The NPLC-MS method was applied for the determination of propranolol enantiomers in human plasma after microextraction by packed C18 sorbent.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy