SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahnmark A.) "

Sökning: WFRF:(Ahnmark A.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karlsson, D., et al. (författare)
  • Inhibition of SGLT2 Preserves Function and Promotes Proliferation of Human Islets Cells In Vivo in Diabetic Mice
  • 2022
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Dapagliflozin is a sodium-glucose co-transporter 2 (SGLT2) inhibitor used for the treatment of diabetes. This study examines the effects of dapagliflozin on human islets, focusing on alpha and beta cell composition in relation to function in vivo, following treatment of xeno-transplanted diabetic mice. Mouse beta cells were ablated by alloxan, and dapagliflozin was provided in the drinking water while controls received tap water. Body weight, food and water intake, plasma glucose, and human C-peptide levels were monitored, and intravenous arginine/glucose tolerance tests (IVarg GTT) were performed to evaluate islet function. The grafted human islets were isolated at termination and stained for insulin, glucagon, Ki67, caspase 3, and PDX-1 immunoreactivity in dual and triple combinations. In addition, human islets were treated in vitro with dapagliflozin at different glucose concentrations, followed by insulin and glucagon secretion measurements. SGLT2 inhibition increased the animal survival rate and reduced plasma glucose, accompanied by sustained human C-peptide levels and improved islet response to glucose/arginine. SGLT2 inhibition increased both alpha and beta cell proliferation (Ki67+glucagon+ and Ki67+insulin+) while apoptosis was reduced (caspase3+glucagon+ and caspase3+insulin+). Alpha cells were fewer following inhibition of SGLT2 with increased glucagon/PDX-1 double-positive cells, a marker of alpha to beta cell transdifferentiation. In vitro treatment of human islets with dapagliflozin had no apparent impact on islet function. In summary, SGLT2 inhibition supported human islet function in vivo in the hyperglycemic milieu and potentially promoted alpha to beta cell transdifferentiation, most likely through an indirect mechanism. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
2.
  • Lee, S. D., et al. (författare)
  • IDOL regulates systemic energy balance through control of neuronal VLDLR expression
  • 2019
  • Ingår i: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 1:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver X receptors limit cellular lipid uptake by stimulating the transcription of inducible degrader of the low-density lipoprotein receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of dietinduced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose tissue, endothelium, intestine, and skeletal muscle) but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to the control of metabolism. Finally, we identified very low-density lipoprotein receptor (VLDLR) rather than low-density lipoprotein receptor (LDLR) as the primary mediator of the effects of IDOL on energy balance. These data identify a role for the neuronal IDOL-VLDLR pathway in metabolic homoeostasis and diet-induced obesity.
  •  
3.
  • Skrtic, Stanko, 1970, et al. (författare)
  • Secretagogin is increased in plasma from type 2 diabetes patients and potentially reflects stress and islet dysfunction
  • 2018
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Beta cell dysfunction accompanies and drives the progression of type 2 diabetes mellitus (T2D), but there are few clinical biomarkers available to assess islet cell stress in humans. Secretagogin, a protein enriched in pancreatic islets, demonstrates protective effects on beta cell function in animals. However, its potential as a circulating biomarker released from human beta cells and islets has not been studied. In this study primary human islets, beta cells and plasma samples were used to explore secretion and expression of secretagogin in relation to the T2D pathology. Secretagogin was abundantly and specifically expressed and secreted from human islets. Furthermore, T2D patients had an elevated plasma level of secretagogin compared with matched healthy controls, which was confirmed in plasma of diabetic mice transplanted with human islets. Additionally, the plasma secretagogin level of the human cohort had an inverse correlation to clinical assessments of beta cell function. To explore the mechanism of secretagogin release in vitro, human beta cells (EndoC-[beta H1) were exposed to elevated glucose or cellular stress-inducing agents. Secretagogin was not released in parallel with glucose stimulated insulin release, but was markedly elevated in response to endoplasmic reticulum stressors and cytokines. These findings indicate that secretagogin is a potential novel biomarker, reflecting stress and islet cell dysfunction in T2D patients.
  •  
4.
  •  
5.
  • Kroon, Tobias, et al. (författare)
  • PPARγ and PPARα synergize to induce robust browning of white fat in vivo
  • 2020
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 36
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Peroxisome proliferator-activated receptors (PPARs) are key transcription factors that regulate adipose development and function, and the conversion of white into brown-like adipocytes. Here we investigated whether PPARα and PPARγ activation synergize to induce the browning of white fat. Methods: A selection of PPAR activators was tested for their ability to induce the browning of both mouse and human white adipocytes in vitro, and in vivo in lean and obese mice. Results: All dual PPARα/γ activators tested robustly increased uncoupling protein 1 (Ucp1) expression in both mouse and human adipocytes in vitro, with tesaglitazar leading to the largest Ucp1 induction. Importantly, dual PPARα/γ activator tesaglitazar strongly induced browning of white fat in vivo in both lean and obese male mice at thermoneutrality, greatly exceeding the increase in Ucp1 observed with the selective PPARγ activator rosiglitazone. While selective PPARγ activation was sufficient for the conversion of white into brown-like adipocytes in vitro, dual PPARα/γ activation was superior to selective PPARγ activation at inducing white fat browning in vivo. Mechanistically, the superiority of dual PPARα/γ activators is mediated at least in part via a PPARα-driven increase in fibroblast growth factor 21 (FGF21). Combined treatment with rosiglitazone and FGF21 resulted in a synergistic increase in Ucp1 mRNA levels both in vitro and in vivo. Tesaglitazar-induced browning was associated with increased energy expenditure, enhanced insulin sensitivity, reduced liver steatosis, and an overall improved metabolic profile compared to rosiglitazone and vehicle control groups. Conclusions: PPARγ and PPARα synergize to induce robust browning of white fat in vivo, via PPARγ activation in adipose, and PPARα-mediated increase in FGF21. © 2020 The Authors
  •  
6.
  • Petkevicius, K., et al. (författare)
  • TLCD1 and TLCD2 regulate cellular phosphatidylethanolamine composition and promote the progression of non-alcoholic steatohepatitis
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The regulation of cellular phosphatidylethanolamine (PE) acyl chain composition is poorly understood. Here, the authors show that TLCD1 and TLCD2 proteins mediate the formation of monounsaturated fatty acid-containing PE species and promote the progression of non-alcoholic steatohepatitis. The fatty acid composition of phosphatidylethanolamine (PE) determines cellular metabolism, oxidative stress, and inflammation. However, our understanding of how cells regulate PE composition is limited. Here, we identify a genetic locus on mouse chromosome 11, containing two poorly characterized genes Tlcd1 and Tlcd2, that strongly influences PE composition. We generated Tlcd1/2 double-knockout (DKO) mice and found that they have reduced levels of hepatic monounsaturated fatty acid (MUFA)-containing PE species. Mechanistically, TLCD1/2 proteins act cell intrinsically to promote the incorporation of MUFAs into PEs. Furthermore, TLCD1/2 interact with the mitochondria in an evolutionarily conserved manner and regulate mitochondrial PE composition. Lastly, we demonstrate the biological relevance of our findings in dietary models of metabolic disease, where Tlcd1/2 DKO mice display attenuated development of non-alcoholic steatohepatitis compared to controls. Overall, we identify TLCD1/2 proteins as key regulators of cellular PE composition, with our findings having broad implications in understanding and treating disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy