SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahnmark Andrea) "

Sökning: WFRF:(Ahnmark Andrea)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bjursell, Mikael, 1977, et al. (författare)
  • Opposing effects of adiponectin receptors 1 and 2 on energy metabolism
  • 2007
  • Ingår i: DIABETES. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:3, s. 583-593
  • Tidskriftsartikel (refereegranskat)abstract
    • The adipocyte-derived hormone adiponectin regulates glucose and lipid metabolism and influences the risk for developing obesity, type 2 diabetes, and cardiovascular disease. Adiponectin binds to two different seven-transmembrane domain receptors termed AdipoR1 and AdipoR2. To study the physiological importance of these receptors, AdipoR1 gene knockout mice (AdipoR1−/−) and AdipoR2 gene knockout mice (AdipoR2−/−) were generated. AdipoR1−/− mice showed increased adiposity associated with decreased glucose tolerance, spontaneous locomotor activity, and energy expenditure. However, AdipoR2−/− mice were lean and resistant to high-fat diet–induced obesity associated with improved glucose tolerance and higher spontaneous locomotor activity and energy expenditure and reduced plasma cholesterol levels. Thus, AdipoR1 and AdipoR2 are clearly involved in energy metabolism but have opposing effects.
  •  
2.
  • Edvardsson, Ulrika, 1967, et al. (författare)
  • PPARalpha activation increases triglyceride mass and adipose differentiation-related protein in hepatocytes.
  • 2006
  • Ingår i: Journal of lipid research. - 0022-2275. ; 47:2, s. 329-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Adipose differentiation-related protein (ADRP) is a lipid droplet-associated protein that is expressed in various tissues. In mice treated with the peroxisome proliferator-activated receptor alpha (PPARalpha) agonist Wy14,643 (Wy), hepatic mRNA and protein levels of ADRP as well as hepatic triglyceride content increased. Also in primary mouse hepatocytes, Wy increased ADRP expression and intracellular triglyceride mass. The triglyceride mass increased in spite of unchanged triglyceride biosynthesis and increased palmitic acid oxidation. However, Wy incubation decreased the secretion of newly synthesized triglycerides, whereas apolipoprotein B secretion increased. Thus, decreased availability of triglycerides for VLDL assembly could help to explain the cellular accumulation of triglycerides after Wy treatment. We hypothesized that this effect could be mediated by increased ADRP expression. Similar to PPARalpha activation, adenovirus-mediated ADRP overexpression in mouse hepatocytes enhanced cellular triglyceride mass and decreased the secretion of newly synthesized triglycerides. In ADRP-overexpressing cells, Wy incubation resulted in a further decrease in triglyceride secretion. This effect of Wy was not attributable to decreased cellular triglycerides after increased fatty acid oxidation because the triglyceride mass in Wy-treated ADRP-overexpressing cells was unchanged. In summary, PPARalpha activation prevents the availability of triglycerides for VLDL assembly and increases hepatic triglyceride content in part by increasing the expression of ADRP.
  •  
3.
  •  
4.
  •  
5.
  • Lindén, Daniel, 1971, et al. (författare)
  • Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice.
  • 2019
  • Ingår i: Molecular metabolism. - : Elsevier BV. - 2212-8778. ; 22:April, s. 49-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is becoming a leading cause of advanced chronic liver disease. The progression of NAFLD, including nonalcoholic steatohepatitis (NASH), has a strong genetic component, and the most robust contributor is the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 encoding the 148M protein sequence variant. We hypothesized that suppressing the expression of the PNPLA3 148M mutant protein would exert a beneficial effect on the entire spectrum of NAFLD.We examined the effects of liver-targeted GalNAc3-conjugated antisense oligonucleotide (ASO)-mediated silencing of Pnpla3 in a knock-in mouse model in which we introduced the human PNPLA3 I148M mutation.ASO-mediated silencing of Pnpla3 reduced liver steatosis (p=0.038) in homozygous Pnpla3 148M/M knock-in mutant mice but not in wild-type littermates fed a steatogenic high-sucrose diet. In mice fed a NASH-inducing diet, ASO-mediated silencing of Pnpla3 reduced liver steatosis score and NAFLD activity score independent of the Pnpla3 genotype, while reductions in liver inflammation score (p=0.018) and fibrosis stage (p=0.031) were observed only in the Pnpla3 knock-in 148M/M mutant mice. These responses were accompanied by reduced liver levels of Mcp1 (p=0.026) and Timp2 (p=0.007) specifically in the mutant knock-in mice. This may reduce levels of chemokine attracting inflammatory cells and increase the collagenolytic activity during tissue regeneration.This study provides the first evidence that a Pnpla3 ASO therapy can improve all features of NAFLD, including liver fibrosis, and suppress the expression of a strong innate genetic risk factor, Pnpla3 148M, which may open up a precision medicine approach in NASH.
  •  
6.
  • Lindgren, Anna, et al. (författare)
  • Adiponectin receptor 2 deficiency results in reduced atherosclerosis in the brachiocephalic artery in apolipoprotein e deficient mice.
  • 2013
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Adiponectin has been shown to have beneficial cardiovascular effects and to signal through the adiponectin receptors, AdipoR1 and AdipoR2. The original aim of this study was to investigate the effect of combined AdipoR1 and AdipoR2 deficiency (AdipoR1(-/-)AdipoR2(-/-)) on atherosclerosis. However, we made the interesting observation that AdipoR1 (-/-) AdipoR2 (-/-) leads to embryonic lethality demonstrating the critical importance of the adiponectin signalling system during development. We then investigated the effect of AdipoR2-ablation on the progression of atherosclerosis in apolipoprotein E deficient (ApoE (-/-) ) mice. AdipoR2(-/-)ApoE(-/-) mice fed an atherogenic diet had decreased plaque area in the brachiocephalic artery compared with AdipoR2 (+/+) ApoE(-/-) littermate controls as visualized in vivo using an ultrasound biomicroscope and confirmed by histological analyses. The decreased plaque area in the brachiocephalic artery could not be explained by plasma cholesterol levels or inflammatory status. However, accumulation of neutral lipids was decreased in peritoneal macrophages from AdipoR2(-/-)ApoE(-/-) mice after incubation with oxidized LDL. This effect was associated with lower CD36 and higher ABCA1 mRNA levels in peritoneal macrophages from AdipoR2(-/-)ApoE(-/-) mice compared with AdipoR2(+/+)ApoE(-/-) controls after incubation with oxidized LDL. In summary, we show that adiponectin receptors are crucial during embryonic development and that AdipoR2-deficiency slows down the progression of atherosclerosis in the brachiocephalic artery of ApoE-deficient mice.
  •  
7.
  • Palmgren, Henrik, et al. (författare)
  • Elevated Adipocyte Membrane Phospholipid Saturation Does Not Compromise Insulin Signaling
  • 2023
  • Ingår i: DIABETES. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 72:10, s. 1350-1363
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased saturated fatty acid (SFA) levels in membrane phospholipids have been implicated in the development of metabolic disease. Here, we tested the hypothesis that increased SFA content in cell membranes negatively impacts adipocyte insulin signaling. Preadipocyte cell models with elevated SFA levels in phospholipids were generated by disrupting the ADIPOR2 locus, which resulted in a striking twofold increase in SFA-containing phosphatidylcholines and phosphatidylethanolamines, which persisted in differentiated adipocytes. Similar changes in phospholipid composition were observed in white adipose tissues isolated from the ADIPOR2-knockout mice. The SFA levels in phospholipids could be further increased by treating ADIPOR2-deficient cells with palmitic acid and resulted in reduced membrane fluidity and endoplasmic reticulum stress in mouse and human preadipocytes. Strikingly, increased SFA levels in differentiated adipocyte phospholipids had no effect on adipocyte gene expression or insulin signaling in vitro. Similarly, increased adipocyte phospholipid saturation did not impair white adipose tissue function in vivo, even in mice fed a high-saturated fat diet at thermoneutrality. We conclude that increasing SFA levels in adipocyte phospholipids is well tolerated and does not affect adipocyte insulin signaling in vitro and in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy