SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahrens Bodo) "

Sökning: WFRF:(Ahrens Bodo)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Collier, Emily, et al. (författare)
  • The first ensemble of kilometer-scale simulations of a hydrological year over the third pole
  • 2024
  • Ingår i: Climate Dynamics. - 0930-7575 .- 1432-0894.
  • Tidskriftsartikel (refereegranskat)abstract
    • An accurate understanding of the current and future water cycle over the Third Pole is of great societal importance, given the role this region plays as a water tower for densely populated areas downstream. An emerging and promising approach for skillful climate assessments over regions of complex terrain is kilometer-scale climate modeling. As a foundational step towards such simulations over the Third Pole, we present a multi-model and multi-physics ensemble of kilometer-scale regional simulations for the hydrological year of October 2019 to September 2020. The ensemble consists of 13 simulations performed by an international consortium of 10 research groups, configured with a horizontal grid spacing ranging from 2.2 to 4km covering all of the Third Pole region. These simulations are driven by ERA5 and are part of a Coordinated Regional Climate Downscaling EXperiment Flagship Pilot Study on Convection-Permitting Third Pole. The simulations are compared against available gridded and in-situ observations and remote-sensing data, to assess the performance and spread of the model ensemble compared to the driving reanalysis during the cold and warm seasons. Although ensemble evaluation is hindered by large differences between the gridded precipitation datasets used as a reference over this region, we show that the ensemble improves on many warm-season precipitation metrics compared with ERA5, including most wet-day and hour statistics, and also adds value in the representation of wet spells in both seasons. As such, the ensemble will provide an invaluable resource for future improvements in the process understanding of the hydroclimate of this remote but important region.
  •  
2.
  • Kelemen, Fanni Dora, et al. (författare)
  • Meridional Heat Transport in the DeepMIP Eocene Ensemble : Non-CO2 and CO2 Effects
  • 2023
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 38:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The total meridional heat transport (MHT) is relatively stable across different climates. Nevertheless, the strength of individual processes contributing to the total transport are not stable. Here we investigate the MHT and its main components especially in the atmosphere, in five coupled climate model simulations from the Deep-Time Model Intercomparison Project (DeepMIP). These simulations target the early Eocene climatic optimum, a geological time period with high CO2 concentrations, analog to the upper range of end-of-century CO2 projections. Preindustrial and early Eocene simulations, at a range of CO2 levels are used to quantify the MHT changes in response to both CO2 and non-CO2 related forcings. We found that atmospheric poleward heat transport increases with CO2, while oceanic poleward heat transport decreases. The non-CO2 boundary conditions cause more MHT toward the South Pole, mainly through an increase in the southward oceanic heat transport. The changes in paleogeography increase the heat transport via transient eddies at the northern mid-latitudes in the Eocene. The Eocene Hadley cells do not transport more heat poleward, but due to the warmer atmosphere, especially the northern cell, circulate more heat in the tropics, than today. The monsoon systems' poleward latent heat transport increases with rising CO2 concentrations, but this change is counterweighted by the globally smaller Eocene monsoon area. Our results show that the changes in the monsoon systems' latent heat transport is a robust feature of CO2 warming, which is in line with the currently observed precipitation increase of present day monsoon systems.
  •  
3.
  • Prein, Andreas F., et al. (författare)
  • Towards Ensemble-Based Kilometer-Scale Climate Simulations over the Third Pole Region
  • 2022
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894.
  • Tidskriftsartikel (refereegranskat)abstract
    • The Tibetan Plateau and its surrounding mountains have an average elevation of 4,400m and a glaciated area of ∼ 100,000km 2 giving it the name “Third Pole (TP) region”. The TP is the headwater of many major rivers in Asia that provide fresh water to hundreds of millions of people. Climate change is altering the energy and water cycle of the TP at a record pace but the future of this region is highly uncertain due to major challenges in simulating weather and climate processes in this complex area. The Convection-Permitting Third Pole (CPTP) project is a Coordinated Regional Downscaling Experiment (CORDEX) Flagship Pilot Study (FPS) that aims to revolutionize our understanding of climate change impacts on the TP through ensemble-based, kilometer-scale climate modeling. Here we present the experimental design and first results from multi-model, multi-physics ensemble simulations of three case studies. The five participating modeling systems show high performance across a range of meteorological situations and are close to having ”observational quality” in simulating precipitation and near-surface temperature. This is partly due to the large differences between observational datasets in this region, which are the leading source of uncertainty in model evaluations. However, a systematic cold bias above 2000m exists in most modeling systems. Model physics sensitivity tests performed with the Weather Research and Forecasting (WRF) model show that planetary boundary layer (PBL) physics and microphysics contribute equally to model uncertainties. Additionally, larger domains result in better model performance. We conclude by describing high-priority research needs and the next steps in the CPTP project.
  •  
4.
  • You, Qinglong, et al. (författare)
  • Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives
  • 2020
  • Ingår i: Earth-Science Reviews. - : Elsevier BV. - 0012-8252. ; 210
  • Forskningsöversikt (refereegranskat)abstract
    • © 2020 Elsevier B.V. The Tibetan Plateau (TP) is also known as the “Third Pole”. Elevation dependent warming (EDW), the phenomenon that warming rate changes systematically with elevation, is of high significance for realistically estimating warming rates and their impacts over the TP. This review summarizes studies of characteristics and mechanisms behind EDW over the TP based on multiple observed datasets and model simulations. Spatial expression of EDW and explanatory mechanisms are still largely unknown because of the lack of suitable data over the TP. The focus is on the roles played by known mechanisms such as snow/ice-albedo feedback, cloud feedback, atmospheric water vapor feedback, aerosol feedback, and changes in land use, ozone and vegetation. At present, there is limited consensus on the main mechanisms controlling EDW. Finally, new perspectives and unresolved issues are outlined, including quantification of EDW in climate model simulations, explanation of the long-term EDW reconstructed from proxies, interaction between the Asian summer monsoon and EDW, importance of EDW for future environmental changes and water resources, and current gaps in understanding EDW over extremely high elevations. Further progress requires a more comprehensive ground observation network, greater use of remote sensing data, and high-resolution climate modeling with better representation of both atmospheric and cryospheric processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy