SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ail Ujwala 1980 ) "

Sökning: WFRF:(Ail Ujwala 1980 )

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Fareed, et al. (författare)
  • Manufacturing Poly(3,4-Ethylenedioxythiophene) Electrocatalytic Sheets for Large-Scale H2O2 Production
  • 2022
  • Ingår i: Advanced Sustainable Systems. - : John Wiley and Sons Inc. - 2366-7486. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Producing thick films of conducting polymers by a low-cost manufacturing technique would enable new applications. However, removing huge solvent volume from diluted suspension or dispersion (1–3 wt%) in which conducting polymers are typically obtained is a true manufacturing challenge. In this work, a procedure is proposed to quickly remove water from the conducting polymer poly(3,4-ethylenedioxythiophene:poly(4-styrene sulfonate) (PEDOT:PSS) suspension. The PEDOT:PSS suspension is first flocculated with 1 m H2SO4 transforming PEDOT nanoparticles (≈50–500 nm) into soft microparticles. A filtration process inspired by pulp dewatering in a paper machine on a wire mesh with apertures dimension between 60 µm and 0.5 mm leads to thick free-standing films (≈0.5 mm). Wire mesh clogging that hinders dewatering (known as dead-end filtration) is overcome by adding to the flocculated PEDOT:PSS dispersion carbon fibers that aggregate and form efficient water channels. Moreover, this enables fast formation of thick layers under simple atmospheric pressure filtration, thus making the process truly scalable. Thick freestanding PEDOT films thus obtained are used as electrocatalysts for efficient reduction of oxygen to hydrogen peroxide, a promising green chemical and fuel. The inhomogeneity of the films does not affect their electrochemical function. © 2021 The Authors. 
  •  
2.
  • Ail, Ujwala, 1980-, et al. (författare)
  • Optimization of Non-Pyrolyzed Lignin Electrodes for Sustainable Batteries
  • 2023
  • Ingår i: ADVANCED SUSTAINABLE SYSTEMS. - : WILEY-V C H VERLAG GMBH. - 2366-7486. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin, a byproduct from the pulp industry, is one of the redox active biopolymers being investigated as a component in the electrodes for sustainable energy storage applications. Due to its insulating nature, it needs to be combined with a conductor such as carbon or conducting polymer for efficient charge storage. Here, the lignin/carbon composite electrodes manufactured via mechanical milling (ball milling) are reported. The composite formation, correlation between performance and morphology is studied by comparison with manual mixing and jet milling. Superior charge storage capacity with approximate to 70% of the total contribution from the Faradaic process involving the redox functionality of lignin is observed in a mechanically milled composite. In comparison, manual mix shows only approximate to 30% from the lignin storage participation while the rest is due to the electric double layer at the carbon-electrolyte interface. The significant participation of lignin in the ball milled composite is attributed to the homogeneous, intimate mixing of the carbon and the lignin leading the electronic carrier transported in the carbon phase to reach most of the redox group of lignin. A maximum capacity of 49 mAh g(-1) is obtained at charge/discharge rate of 0.25 A g(-1) for the sample milled for 60 min.
  •  
3.
  • Che, Canyan, 1988-, et al. (författare)
  • Twinning Lignosulfonate with a Conducting Polymer via Counter-Ion Exchange for Large-Scale Electrical Storage
  • 2019
  • Ingår i: Advanced Sustainable Systems. - : Wiley-VCH Verlag. - 2366-7486. ; 3:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignosulfonate (LS) is a large-scale surplus product of the forest and paper industries, and has primarily been utilized as a low-cost plasticizer in making concrete for the construction industry. LS is an anionic redox-active polyelectrolyte and is a promising candidate to boost the charge capacity of the positive electrode (positrode) in redox-supercapacitors. Here, the physical-chemical investigation of how this biopolymer incorporates into the conducting polymer PEDOT matrix, of the positrode, by means of counter-ion exchange is reported. Upon successful incorporation, an optimal access to redox moieties is achieved, which provides a 63% increase of the resulting stored electrical charge by reversible redox interconversion. The effects of pH, ionic strength, and concentrations, of included components, on the polymer–polymer interactions are optimized to exploit the biopolymer-associated redox currents. Further, the explored LS-conducting polymer incorporation strategy, via aqueous synthesis, is evaluated in an up-scaling effort toward large-scale electrical energy storage technology. By using an up-scaled production protocol, integration of the biopolymer within the conducting polymer matrix by counter-ion exchange is confirmed and the PEDOT-LS synthesized through optimized strategy reaches an improved charge capacity of 44.6 mAh g−1. 
  •  
4.
  • Kumar, Divyaratan, et al. (författare)
  • Self-Discharge in Batteries Based on Lignin and Water-in-Polymer Salt Electrolyte
  • 2022
  • Ingår i: Advanced Energy and Sustainability Research. - : Wiley. - 2699-9412. ; 3:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin, the most abundant biopolymer on earth, has been explored as an electroactive material in battery applications. One essential feature for such lignin-based batteries to reach successful usage and implementation, e.g., large-scale stationary grid applications, is to have slow self-discharge characteristics on top of the essential safety and life-cycle properties. Water-in-polymer salt electrolytes (WIPSEs) have been demonstrated as an attractive route to solve this issue; however, little has been done to understand the fundamentals of actual self-discharge mechanisms. Herein, the impact of some critical chemical and physical parameters (pH, dissolved oxygen, viscosity, and cutoff potential) on self-discharge of batteries based on WIPSE and lignin has been investigated. The pH range is crucial as there is an interplay between long-term stability and high energy density. Indeed, lignin derivatives typically store relatively more charge in acidic media but later promote corrosion affecting device stability. A robust and high-performing organic battery, incorporating potassium polyacrylate as WIPSE, is demonstrated, which expresses good self-discharge behavior for a broad range of pH and with little impact on the atmosphere used for manufacturing. It is believed that the investigation will provide critical insights to the research community to promote the advancement of printed large-scale energy storage devices.
  •  
5.
  • Kumar, Divyaratan, 1995-, et al. (författare)
  • Zinc salt in "Water-in-Polymer Salt Electrolyte" for Zinc-Lignin Batteries: Electroactivity of the Lignin Cathode
  • 2023
  • Ingår i: ADVANCED SUSTAINABLE SYSTEMS. - : WILEY-V C H VERLAG GMBH. - 2366-7486. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Zn-ion batteries are one of the hot candidates for low-cost and sustainable secondary batteries. The hydrogen evolution and dendritic growth upon zinc deposition are todays challenges for that technology. One of the new strategies to cope with these issues is to use "water-in-salt" electrolyte (WISE), that is, super concentrated aqueous electrolytes, to broaden its electrochemical stability window (ESW), suppressing hydrogen evolution reaction (HER), and perturbing the dendritic growth. Herein, this work proposes to use "water-in-polymer salt" electrolyte (WIPSE) concept to mitigate the challenges with Zn ion batteries and bring this technology toward one of the cheapest, greenest, and most sustainable electrodes: Lignin-carbon (L-C) electrode. Potassium polyacrylate (PAAK) as WISE bears out as better electrolyte for L-C electrodes in terms of self-discharge, cyclic stability, and specific capacity compared to conventional electrolyte based on chemically cousin molecule potassium acetate. Zinc bis(trifluoromethanesulfonyl) imide (Zn(TFSI)(2)) added into WIPSE shows deposition and dissolution of Zn in Zn//Zn symmetric cell suggesting that Zn2+ are moving into the polyanionic network. Furthermore, the added bis (trifluor omethanesul fonyl) imide (TFSI-) metal salts trigger a approximate to 40% enhancement of the capacity of L-C electrode. These results show a new promising direction toward the development of cost-effective and sustainable Zn-lignin batteries.
  •  
6.
  • Molaei, Arman, 1988-, et al. (författare)
  • New low-cost, flow-through carbon electrodes characterized in brackish water
  • 2023
  • Ingår i: Chemické zvesti. - : Slovenskâa akadâemia vied; Springer. - 0366-6352 .- 1336-9075. ; 77, s. 1941-1950
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a simple and low-cost flow-through electrode for electrochemical cells used for instance in capacitive desalination. We have coated macro-porous carbon fiber papers with various loads of carbon microporous particles to combine both a high surface area and an open structure for good fluid dynamics. In this first study, we restrict our investigation to the charging/discharging behavior, the identification of side reactions, and the effect of geometry on the diffusion of ions. The electrochemical performance was first investigated by cyclic voltammetry and galvanic charge-discharge techniques. The specific capacitance increases by three orders of magnitude upon adding the carbon particles. Then, electrochemical impedance spectroscopy revealed the presence of charge transfer phenomena and modification in the mass transport by the diffusion process for the coated electrode.
  •  
7.
  • Wijeratne, Kosala, et al. (författare)
  • Bulk electronic transport impacts on electron transfer at conducting polymer electrode-electrolyte interfaces.
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National academy of sciences. - 0027-8424 .- 1091-6490. ; :7, s. 11899-11904
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemistry is an old but still flourishing field of research due to the importance of the efficiency and kinetics of electrochemical reactions in industrial processes and (bio-)electrochemical devices. The heterogeneous electron transfer from an electrode to a reactant in the solution has been well studied for metal, semiconductor, metal oxide, and carbon electrodes. For those electrode materials, there is little correlation between the electronic transport within the electrode material and the electron transfer occurring at the interface between the electrode and the solution. Here, we investigate the heterogeneous electron transfer between a conducting polymer electrode and a redox couple in an electrolyte. As a benchmark system, we use poly(3,4-ethylenedioxythiophene) (PEDOT) and the Ferro/ferricyanide redox couple in an aqueous electrolyte. We discovered a strong correlation between the electronic transport within the PEDOT electrode and the rate of electron transfer to the organometallic molecules in solution. We attribute this to a percolation-based charge transport within the polymer electrode directly involved in the electron transfer. We show the impact of this finding by optimizing an electrochemical thermogalvanic cell that transforms a heat flux into electrical power. The power generated by the cell increased by four orders of magnitude on changing the morphology and conductivity of the polymer electrode. As all conducting polymers are recognized to have percolation transport, we believe that this is a general phenomenon for this family of conductors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy