SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aiuppa A.) "

Sökning: WFRF:(Aiuppa A.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gislason, S.R., et al. (författare)
  • Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland
  • 2015
  • Ingår i: Geochemical Perspectives Letters. - : European Association of Geochemistry. - 2410-3403 .- 2410-339X. ; 1:2015, s. 84 - 93
  • Tidskriftsartikel (refereegranskat)abstract
    • The effusive six months long 2014-2015 Bárðarbunga eruption (31 August-27 February) was the largest in Iceland for more than 200 years, producing 1.6 ± 0.3 km3 of lava. The total SO2 emission was 11 ± 5 Mt, more than the amount emitted from Europe in 2011. The ground level concentration of SO2 exceeded the 350 μg m−3 hourly average health limit over much of Iceland for days to weeks. Anomalously high SO2 concentrations were also measured at several locations in Europe in September. The lowest pH of fresh snowmelt at the eruption site was 3.3, and 3.2 in precipitation 105 km away from the source. Elevated dissolved H2SO4, HCl, HF, and metal concentrations were measured in snow and precipitation. Environmental pressures from the eruption and impacts on populated areas were reduced by its remoteness, timing, and the weather. The anticipated primary environmental pressure is on the surfacewaters, soils, and vegetation of Iceland.
  •  
2.
  • Coppola, D., et al. (författare)
  • Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)
  • 2017
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 1385-013X .- 0012-821X. ; 463, s. 13-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Basaltic magma chambers are often characterized by emptying and refilling cycles that influence their evolution in space and time, and the associated eruptive activity. During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system (>240×106 m3) and resulted in collapse of the 1-km-wide summit crater. Following these major events, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system consisting of a vertically-zoned network of relatively small-volume magma pockets. Continuous inflation provoked four small (
  •  
3.
  • Liu, E. J., et al. (författare)
  • Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes
  • 2020
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:44
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanic emissions are a critical pathway in Earth's carbon cycle. Here, we show that aerial measurements of volcanic gases using unoccupied aerial systems (UAS) transform our ability to measure and monitor plumes remotely and to constrain global volatile fluxes from volcanoes. Combining multi-scale measurements from ground-based remote sensing, long-range aerial sampling, and satellites, we present comprehensive gas fluxes-3760 ± [600, 310] tons day-1 CO2 and 5150 ± [730, 340] tons day-1 SO2-for a strong yet previously uncharacterized volcanic emitter: Manam, Papua New Guinea. The CO2/ST ratio of 1.07 ± 0.06 suggests a modest slab sediment contribution to the sub-arc mantle. We find that aerial strategies reduce uncertainties associated with ground-based remote sensing of SO2 flux and enable near-real-time measurements of plume chemistry and carbon isotope composition. Our data emphasize the need to account for time averaging of temporal variability in volcanic gas emissions in global flux estimates.
  •  
4.
  • Pfeffer, M. A., et al. (författare)
  • Ground-Based measurements of the 2014-2015 holuhraun volcanic cloud (Iceland)
  • 2018
  • Ingår i: Geosciences (Switzerland). - : MDPI AG. - 2076-3263. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2014-2015 Bárðarbunga fissure eruption at Holuhraun in central Iceland was distinguished by the high emission of gases, in total 9.6 Mt SO 2 , with almost no tephra. This work collates all ground-based measurements of this extraordinary eruption cloud made under particularly challenging conditions: remote location, optically dense cloud with high SO 2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO 2 flux with three scanning DOAS instruments were augmented by car traverses along the ring-road and along the lava. The ratios of other gases/SO 2 were measured by OP-FTIR, MultiGAS, and filter packs. Ratios of SO 2 /HCl = 30-110 and SO 2 /HF = 30-130 show a halogen-poor eruption cloud. Scientists on-site reported extremely minor tephra production during the eruption. OPC and filter packs showed low particle concentrations similar to non-eruption cloud conditions. Three weather radars detected a droplet-rich eruption cloud. Top of eruption cloud heights of 0.3-5.5 km agl were measured with ground-and aircraft-based visual observations, web camera and NicAIR II infrared images, triangulation of scanning DOAS instruments, and the location of SO 2 peaks measured by DOAS traverses. Cloud height and emission rate measurements were critical for initializing gas dispersal simulations for hazard forecasting.
  •  
5.
  • Aiuppa, A., et al. (författare)
  • Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry
  • 2014
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 1385-013X .- 0012-821X. ; 407, s. 134-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Pads (0.30 +/- 0.06, mean +/- SD), Rincon de la Vieja (27.0 +/- 15.3), and Turrialba (2.2 +/- 0.8) in Costa Rica, and at Telica (3.0 +/- 0.9) and San Cristobal (4.2 +/- 1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5 +/- 11.0 tons/day at Pods) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835 1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/S-T (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (similar to 3) relative to Costa Rica (similar to 0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from global arc volcanism.
  •  
6.
  • Conde Jacobo, Alexander Vladimir, 1979, et al. (författare)
  • Measurements of volcanic SO2 and CO2 fluxes by combined DOAS, Multi-GAS and FTIR observations: a case study from Turrialba and Telica volcanoes
  • 2014
  • Ingår i: International Journal of Earth Sciences. - : Springer Science and Business Media LLC. - 1437-3262 .- 1437-3254. ; 103:8, s. 2335-2347
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past few decades, substantial progress has been made to overcome the technical difficulties of continuously measuring volcanic SO2 emissions. However, measurements of CO2 emissions still present many difficulties, partly due to the lack of instruments that can directly measure CO2 emissions and partly due to its strong atmospheric background. In order to overcome these difficulties, a commonly taken approach is to combine differential optical absorption spectroscopy (DOAS) by using NOVAC scan-DOAS instruments for continuous measurements of crateric SO2 emissions, and electrochemical/NDIR multi-component gas analyser system (multi-GAS) instruments for measuring CO2/SO2 ratios of excerpts of the volcanic plume. This study aims to quantify the representativeness of excerpts of CO2/SO2 ratios measured by Multi-GAS as a fraction of the whole plume composition, by comparison with simultaneously measured CO2/SO2 ratios using cross-crater Fourier transform infrared spectroscopy (FTIR). Two study cases are presented: Telica volcano (Nicaragua), with a homogenous plume, quiescent degassing from a deep source and ambient temperature, and Turrialba volcano (Costa Rica), which has a non-homogeneous plume from three main sources with different compositions and temperatures. Our comparison shows that in our "easier case" (Telica), FTIR and Multi-GAS CO2/SO2 ratios agree within a factor about 3 %. In our "complicated case" (Turrialba), Multi-GAS and FTIR yield CO2/SO2 ratios differing by approximately 13-25 % at most. These results suggest that a fair estimation of volcanic CO2 emissions can be provided by the combination of DOAS and Multi-GAS instruments for volcanoes with similar degassing conditions as Telica or Turrialba. Based on the results of this comparison, we report that by the time our measurements were made, Telica and Turrialba were emitting approximately 100 and 1,000 t day(-1) of CO2, respectively.
  •  
7.
  • Di Muro, A., et al. (författare)
  • Magma degassing at piton de la fournaise volcano
  • 2016
  • Ingår i: Active Volcanoes of the World. - Berlin, Heidelberg : Springer Berlin Heidelberg. - 2195-3589 .- 2195-7029. ; , s. 203-222
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Since about 1860 AD, magmatic gas release at Piton de la Fournaise volcano is very weak during intra-eruptive phases and essentially occurs during the relatively short-lived eruptions. Recent gas measurements performed during an eruption in October 2010, combined with detailed review of melt and fluid inclusion composition in magmas erupted over the past 50 kyrs, indicate that most PdF eruptions extrude magmas having variably degassed at shallow depth (P < 1 kbar). The average low gas flux results from the low volume of both the magma recharges (from P > 1 kbar) and the shallow magmas, whose fluids are efficiently scrubbed by the hydrothermal system and the water table. Quantification of SO2 fluxes permits to track syn-eruptive magma ascent at shallow level (above sea level). Deeper exsolution of CO2 (below sea level) provides a potential long-term geochemical precursor for the detection of new magma recharges and volcano unrest.
  •  
8.
  • Lopez, T., et al. (författare)
  • Geochemical constraints on volatile sources and subsurface conditions at Mount Martin, Mount Mageik, and Trident Volcanoes, Katmai Volcanic Cluster, Alaska
  • 2017
  • Ingår i: Journal of Volcanology and Geothermal Research. - : Elsevier BV. - 0377-0273. ; 347, s. 64-81
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the chemical and isotopic composition of volcanic gases and steam condensate, in situ measurements of plume composition and remote measurements of SO2 flux to constrain volatile sources and characterize subvolcanic conditions at three persistently degassing and seismically active volcanoes within the Katmai Volcanic Cluster (KVC), Alaska: Mount Martin, Mount Mageik and Trident. In situ plume measurements of gas composition were collected at all three volcanoes using MultiGAS instruments to calculate gas ratios (e.g. CO2/H2S, SO2/H2S and H2O/H2S), and remote measurements of SO2 column density were collected from Mount Martin and Mount Mageik by ultraviolet spectrometer systems to calculate SO2 fluxes. Fumaroles were directly sampled for chemical and isotopic composition from Mount Mageik and Trident. Mid Ocean Ridge Basalt (MORB)-like 3He/4He ratios (~ 7.2–7.6 Rc/RA) within Mount Mageik and Trident's fumarole emissions and a moderate SO2 flux (~ 75 t/d) from Mount Martin, combined with gas compositions dominated by H2O, CO2 and H2S from all three volcanoes, indicate magma degassing and active hydrothermal systems in the subsurface of these volcanoes. Mount Martin's gas emissions have the lowest CO2/H2S ratio (~ 2–4) and highest SO2 flux compared to the other KVC volcanoes, indicative of shallow magma degassing. Geothermometry techniques applied to Mount Mageik and Trident's fumarolic gas compositions suggest that their hydrothermal reservoirs are located at depths of ~ 0.2 and 4 km below the surface, respectively. Observations of an unusually reducing gas composition at Trident and organic material in the near-surface soils suggest that thermal decomposition of sediments may be influencing gas composition. When the measured gas compositions from Mount Mageik and Trident are compared with previous samples collected in the late 1990's, relatively stable magmatic-hydrothermal conditions are inferred for Mount Mageik, while gradual degassing of residual magma and contamination by shallow crustal fluids is inferred for Trident. The isotopic composition of volcanic gases emitted from Mount Mageik and Trident reflect mixing of subducted slab, mantle and crustal volatile sources, with organic sediment and carbonate being the predominant sources. Considering the close proximity of the target volcanoes in comparison with the depth to the subducted slab we speculate that Aleutian Arc volatiles are fed by a relatively homogeneous subducted fluid and that much of the apparent variability in volatile provenance can be explained by shallow crustal volatile sources and/or processes.
  •  
9.
  • Tulet, Pierre, et al. (författare)
  • First results of the Piton de la Fournaise STRAP 2015 experiment: multidisciplinary tracking of a volcanic gas and aerosol plume
  • 2017
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:8, s. 5355-5378
  • Tidskriftsartikel (refereegranskat)abstract
    • The STRAP (Synergie Transdisciplinaire pour Répondre aux Aléas liés aux Panaches volcaniques) campaign was conducted in 2015 to investigate the volcanic plumes of Piton de La Fournaise (La Réunion, France). For the first time, measurements at the local (near the vent) and at the regional scales around the island were conducted. The STRAP 2015 campaign has become possible thanks to a strong cross-disciplinary collaboration between volcanologists and meteorologists. The main observations during four eruptive periods (85 days) are summarized. They include the estimates of SO2, CO2 and H2O emissions, the altitude of the plume at the vent and over different areas of La Réunion Island, the evolution of the SO2 concentration, the aerosol size distribution, and the aerosol extinction profile. A climatology of the volcanic plume dispersion is also reported. Simulations and measurements showed that the plume formed by weak eruption has a stronger interaction with the surface of the island. Strong SO2 and particles concentrations above 1000 ppb and 50 000 cm−3, respectively, are frequently measured over 20 km of distance from the Piton de la Fournaise. The measured aerosol size distribution shows the predominance of small particles in the volcanic plume. A particular emphasis is placed on the gas-particle conversion with several cases of strong nucleation of sulfuric acid observed within the plume and at the distal site of the Maïdo observatory. The STRAP 2015 campaign gave a unique set of multi-disciplinary data that can now be used by modellers to improve the numerical paramameterizations of the physical and chemical evolution of the volcanic plumes.
  •  
10.
  • Bobrowski, N., et al. (författare)
  • Gas emission strength and evolution of the molar ratio of BrO/SO2 in the plume of Nyiragongo in comparison to Etna
  • 2015
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X. ; 120:1, s. 277-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Airborne and ground-based differential optical absorption spectroscopy observations have been carried out at the volcano Nyiragongo (Democratic Republic of Congo) to measure SO2 and bromine monoxide (BrO) in the plume in March 2004 and June 2007, respectively. Additionally filter pack and multicomponent gas analyzer system (Multi-GAS) measurements were carried out in June 2007. Our measurements provide valuable information on the chemical composition of the volcanic plume emitted from the lava lake of Nyiragongo. The main interest of this study has been to investigate for the first time the bromine emission flux of Nyiragongo (a rift volcano) and the BrO formation in its volcanic plume. Measurement data and results from a numerical model of the evolution of BrO in Nyiragongo volcanic plume are compared with earlier studies of the volcanic plume of Etna (Italy). Even though the bromine flux from Nyiragongo (2.6t/d) is slightly greater than that from Etna (1.9t/d), the BrO/SO2 ratio (maximum 7x10(-5)) is smaller than in the plume of Etna (maximum 2.1x10(-4)). A one-dimensional photochemical model to investigate halogen chemistry in the volcanic plumes of Etna and Nyiragongo was initialized using data from Multi-GAS and filter pack measurements. Model runs showed that the differences in the composition of volcanic volatiles led to a smaller fraction of total bromine being present as BrO in the Nyiragongo plume and to a smaller BrO/SO2 ratio.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy