SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Akaberi Dario 1989 ) "

Search: WFRF:(Akaberi Dario 1989 )

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Akaberi, Dario, 1989- (author)
  • Identification of protease inhibitors against Flaviviruses and Coronaviruses
  • 2023
  • Doctoral thesis (other academic/artistic)abstract
    • Vector-borne flaviviruses and coronaviruses of zoonotic origins are important human pathogens and represent a serious threat to public health worldwide. Flaviviruses can be found on all continents, apart from Antarctica, where they are transmitted by arthropod vectors causing millions of infections every year. While most of the infections are mild or asymptomatic, flaviviruses like dengue and yellow fever viruses can cause potentially lethal hemorrhagic fever and shock syndrome. Neurotropic flaviviruses like West Nile, Japanese encephalitis, and Tick-borne encephalitis (TBEV) can cause meningoencephalitis with long-term symptoms.  Coronaviruses, and in particular betacoronaviruses of zoonotic origin like SARS (2003) and MERS (2012), have been periodically emerging since the early 2000s causing outbreaks of severe respiratory syndrome. The latest example is SARS-CoV-2 that after causing a cluster of infection in the Chinese city of Wuhan, spread all over the world causing at present over 6.9 million deaths. Although vaccines are essential in preventing infections or severe disease and hospitalization in the case of SARS-CoV-2, antivirals represent an extremely valuable tool for treatment and prevention of current and future flavivirus and coronavirus infections. In the work presented in this thesis we have used a combination of in silico and in vitro techniques to identify and test the activity of potential inhibitors of viral proteases. In our first study (paper 1) we unexpectedly identified an HIV protease inhibitor with in vitro activity against ZIKV NS2B-NS3 protease. The inhibitor was identified by virtual screening of a library of known protease inhibitors, evaluated by molecular dynamics simulation and finally tested against recombinant ZIKV protease using a FRET-based enzymatic assay. The same combination of molecular docking and molecular dynamics simulations were also used to correctly predict the activity of a known pan-Flavivirus protease inhibitor against TBEV protease (paper 2). As a result, we were the first to report peptide-based compounds with in vitro activity against TBEV. After the outbreak of the COVID-19 we switched our attention to SARS-CoV-2. We first tested the inhibitory effect of the broad-spectrum antiviral nitric oxide (NO) and found that the NO-releasing compound SNAP had a dose dependent inhibitory effect on SARS-CoV-2 replication in cell-based assays (paper 3). We speculated that SNAP could inhibit SARS-COV-2 protease by trans-nitration of the catalytic Cys145 of SARS-CoV-2 main protease and found that SNAP had a dose dependent inhibitory effect on recombinant SARS-CoV-2 Mpro protease activity in an in vitro enzymatic assay. In our last study (paper 4) we identified a new class of potent SARS-CoV-2 protease inhibitors through the affinity screening of DNA-encoded-chemical libraries containing 4.2 billion compounds. The identified compounds inhibited recombinant SARS-CoV-2 protease with IC50 as low as 25 nM and had a dose dependent antiviral effect in the low micromolar range in infected Calu-3 and Caco-2 cell lines. 
  •  
2.
  •  
3.
  • Akaberi, Dario, 1989-, et al. (author)
  • Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro
  • 2020
  • In: Redox Biology. - : Elsevier. - 2213-2317. ; 37
  • Journal article (peer-reviewed)abstract
    • The ongoing SARS-CoV-2 pandemic is a global public health emergency posing a high burden on nations' health care systems and economies. Despite the great effort put in the development of vaccines and specific treatments, no prophylaxis or effective therapeutics are currently available. Nitric oxide (NO) is a broad-spectrum antimicrobial and a potent vasodilator that has proved to be effective in reducing SARS-CoV replication and hypoxia in patients with severe acute respiratory syndrome. Given the potential of NO as treatment for SARS-CoV-2 infection, we have evaluated the in vitro antiviral effect of NO on SARS-CoV-2 replication. The NO-donor S-nitroso-N-acetylpenicillamine (SNAP) had a dose dependent inhibitory effect on SARS-CoV-2 replication, while the non S-nitrosated NAP was not active, as expected. Although the viral replication was not completely abolished (at 200 μM and 400 μM), SNAP delayed or completely prevented the development of viral cytopathic effect in treated cells, and the observed protective effect correlated with the level of inhibition of the viral replication. The capacity of the NO released from SNAP to covalently bind and inhibit SARS-CoV-2 3CL recombinant protease in vitro was also tested. The observed reduction in SARS-CoV-2 protease activity was consistent with S-nitrosation of the enzyme active site cysteine.
  •  
4.
  • Hoffman, Tove, et al. (author)
  • Reduced Binding between Omicron B.1.1.529 and the Human ACE2 Receptor in a Surrogate Virus Neutralization Test for SARS-CoV-2
  • 2023
  • In: Viruses. - : MDPI. - 1999-4915. ; 15:6
  • Journal article (peer-reviewed)abstract
    • The current gold standard assay for detecting neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the conventional virus neutralization test (cVNT), which requires infectious virus and a biosafety level 3 laboratory. Here, we report the development of a SARS-CoV-2 surrogate virus neutralization test (sVNT) that, with Luminex technology, detects NAbs. The assay was designed to mimic the virus-host interaction and is based on antibody blockage between the human angiotensin-converting enzyme 2 (hACE2) receptor and the spike (S) protein of the Wuhan, Delta, and Omicron (B.1.1.529) variants of SARS-CoV-2. The sVNT proved to have a 100% correlation with a SARS-CoV-2 cVNT regarding qualitative results. Binding between the hACE2 receptor and the S1 domain of the B.1.1.529 lineage of the Omicron variant was not observed in the assay but between the receptor and an S1 + S2 trimer and the receptor binding domain (RBD) in a reduced manner, suggesting less efficient receptor binding for the B.1.1.529 Omicron variant. The results indicate that the SARS-CoV-2 sVNT is a suitable tool for both the research community and the public health service, as it may serve as an efficient diagnostic alternative to the cVNT.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view