SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Akhoudas Camille Hayatte) "

Sökning: WFRF:(Akhoudas Camille Hayatte)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akhoudas, Camille Hayatte, 1992-, et al. (författare)
  • Isotopic evidence for an intensified hydrological cycle in the Indian sector of the Southern Ocean
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydrological cycle is expected to intensify in a warming climate. However, observational evidence of such changes in the Southern Ocean is difficult to obtain due to sparse measurements and a complex superposition of changes in precipitation, sea ice, and glacial meltwater. Here we disentangle these signals using a dataset of salinity and seawater oxygen isotope observations collected in the Indian sector of the Southern Ocean. Our results show that the atmospheric water cycle has intensified in this region between 1993 and 2021, increasing the salinity in subtropical surface waters by 0.06 ± 0.07 g kg−1 per decade, and decreasing the salinity in subpolar surface waters by -0.02 ± 0.01 g kg−1 per decade. The oxygen isotope data allow to discriminate the different freshwater processes showing that in the subpolar region, the freshening is largely driven by the increase in net precipitation (by a factor two) while the decrease in sea ice melt is largely balanced by the contribution of glacial meltwater at these latitudes. These changes extend the growing evidence for an acceleration of the hydrological cycle and a melting cryosphere that can be expected from global warming.
  •  
2.
  • Silvano, Alessandro, et al. (författare)
  • Observing Antarctic Bottom Water in the Southern Ocean
  • 2023
  • Ingår i: Frontiers in Marine Science. - 2296-7745. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Dense, cold waters formed on Antarctic continental shelves descend along the Antarctic continental margin, where they mix with other Southern Ocean waters to form Antarctic Bottom Water (AABW). AABW then spreads into the deepest parts of all major ocean basins, isolating heat and carbon from the atmosphere for centuries. Despite AABW's key role in regulating Earth's climate on long time scales and in recording Southern Ocean conditions, AABW remains poorly observed. This lack of observational data is mostly due to two factors. First, AABW originates on the Antarctic continental shelf and slope where in situ measurements are limited and ocean observations by satellites are hampered by persistent sea ice cover and long periods of darkness in winter. Second, north of the Antarctic continental slope, AABW is found below approximately 2 km depth, where in situ observations are also scarce and satellites cannot provide direct measurements. Here, we review progress made during the past decades in observing AABW. We describe 1) long-term monitoring obtained by moorings, by ship-based surveys, and beneath ice shelves through bore holes; 2) the recent development of autonomous observing tools in coastal Antarctic and deep ocean systems; and 3) alternative approaches including data assimilation models and satellite-derived proxies. The variety of approaches is beginning to transform our understanding of AABW, including its formation processes, temporal variability, and contribution to the lower limb of the global ocean meridional overturning circulation. In particular, these observations highlight the key role played by winds, sea ice, and the Antarctic Ice Sheet in AABW-related processes. We conclude by discussing future avenues for observing and understanding AABW, impressing the need for a sustained and coordinated observing system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy