SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Akhras Michael) "

Sökning: WFRF:(Akhras Michael)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stenzinger, Albrecht, et al. (författare)
  • Trailblazing precision medicine in Europe : A joint view by Genomic Medicine Sweden and the Centers for Personalized Medicine, ZPM, in Germany
  • 2022
  • Ingår i: Seminars in Cancer Biology. - : Elsevier. - 1044-579X .- 1096-3650. ; 84, s. 242-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last decades, rapid technological and scientific advances have led to a merge of molecular sciences and clinical medicine, resulting in a better understanding of disease mechanisms and the development of novel therapies that exploit specific molecular lesions or profiles driving disease. Precision oncology is here used as an example, illustrating the potential of precision/personalized medicine that also holds great promise in other medical fields. Real-world implementation can only be achieved by dedicated healthcare connected centers which amass and build up interdisciplinary expertise reflecting the complexity of precision medicine. Networks of such centers are ideally suited for a nation-wide outreach offering access to precision medicine to patients independent of their place of residence. Two of these multicentric initiatives, Genomic Medicine Sweden (GMS) and the Centers for Personalized Medicine (ZPM) initiative in Germany have teamed up to present and share their views on core concepts, potentials, challenges, and future developments in precision medicine. Together with other initiatives worldwide, GMS and ZPM aim at providing a robust and sustainable framework, covering all components from technology development to clinical trials, ethical and legal aspects as well as involvement of all relevant stakeholders, including patients and policymakers in the field.
  •  
2.
  • Akhras, Michael, et al. (författare)
  • Connector Inversion Probe Technology : A Powerful One- Primer Multiplex DNA Amplification System for Numerous Scientific Applications
  • 2007
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 2:9, s. e915-
  • Tidskriftsartikel (refereegranskat)abstract
    • We combined components of a previous assay referred to as Molecular Inversion Probe (MIP) with a complete gap filling strategy, creating a versatile powerful one-primer multiplex amplification system. As a proof-of-concept, this novel method, which employs a Connector Inversion Probe (CIPer), was tested as a genetic tool for pathogen diagnosis, typing, and antibiotic resistance screening with two distinct systems: i) a conserved sequence primer system for genotyping Human Papillomavirus (HPV), a cancer-associated viral agent and ii) screening for antibiotic resistance mutations in the bacterial pathogen Neisseria gonorrhoeae. We also discuss future applications and advances of the CIPer technology such as integration with digital amplification and next-generation sequencing methods. Furthermore, we introduce the concept of two-dimension informational barcodes, i. e. "multiplex multiplexing padlocks'' (MMPs). For the readers' convenience, we also provide an on-line tutorial with user-interface software application CIP creator 1.0.1, for custom probe generation from virtually any new or established primer-pairs.
  •  
3.
  • Akhras, Michael, et al. (författare)
  • PathogenMip Assay : A Multiplex Pathogen Detection Assay
  • 2007
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 2:2, s. e223-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Molecular Inversion Probe (MIP) assay has been previously applied to a large-scale human SNP detection. Here we describe the PathogenMip Assay, a complete protocol for probe production and applied approaches to pathogen detection. We have demonstrated the utility of this assay with an initial set of 24 probes targeting the most clinically relevant HPV genotypes associated with cervical cancer progression. Probe construction was based on a novel, cost-effective, ligase-based protocol. The assay was validated by performing pyrosequencing and Microarray chip detection in parallel experiments. HPV plasmids were used to validate sensitivity and selectivity of the assay. In addition, 20 genomic DNA extracts from primary tumors were genotyped with the PathogenMip Assay results and were in 100% agreement with conventional sequencing using an L1-based HPV genotyping protocol. The PathogenMip Assay is a widely accessible protocol for producing and using highly discriminating probes, with experimentally validated results in pathogen genotyping, which could potentially be applied to the detection and characterization of any microbe.
  •  
4.
  • Akhras, Michael S., 1980- (författare)
  • Nucleic Acid Based Pathogen Diagnostics
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Pathogenic organisms are transmitted to the host organism through all possible connected pathways, and cause a myriad of diseases states. Commonly occurring curable infectious diseases still impose the greatest health impacts on a worldwide perspective. The Bill & Melinda Gates Foundation partnered with RAND Corporation to form the Global Health Diagnostics Forum, with the goal of establishing and interpreting mathematical models for what effects a newly introduced point-of-care pathogen diagnostic would have in developing countries. The results were astonishing, with potentially millions of lives to be saved on an annual basis. Golden standard for diagnostics of pathogenic bacteria has long been cultureable medias. Environmental biologists have estimated that less than 1% of all bacteria are cultureable. Genomic-based approaches offer the potential to identify all microbes from all the biological kingdoms. Nucleic acid based pathogen diagnostics has evolved significantly over the past decades. Novel technologies offer increased potential in sensitivity, specificity, decreased costs and parallel sample management. However, most methods are confined to core laboratory facilities. To construct an ultimate nucleic acid based diagnostic for use in areas of need, potential frontline techniques need to be identified and combined. The research focus of this doctoral thesis work has been to develop and apply nucleic acid based methods for pathogen diagnostics. Methods and assays were applied to the two distinct systems i) screening for antibiotic resistance mutations in the bacterial pathogen Neisseria gonorrhoeae, and ii) genotype determination of the cancer causative Human Papillomavirus (HPV). The first part of the study included development of rapid, direct and multiplex Pyrosequencing nucleic acid screenings. With improved methodology in the sample preparation process, we could detect an existence of multiple co-infecting HPV genotypes at greater sensitivities than previously described, when using the same type of methodology. The second part of the study focused on multiplex nucleic acid amplification strategies using Molecular Inversion Probes with end-step Pyrosequencing screening. The PathogenMip assay presents a complete detection schematic for virtually any known pathogenic organism. We also introduce the novel Connector Inversion Probe, a padlock probe capable of complete gap-fill reactions for multiplex nucleic acid amplifications.
  •  
5.
  • Akhras, Michael S., et al. (författare)
  • The Sequencing Bead Array (SBA), a Next-Generation Digital Suspension Array
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel Sequencing Bead Array (SBA), a complete assay for molecular diagnostics and typing applications. SBA is a digital suspension array using Next-Generation Sequencing (NGS), to replace conventional optical readout platforms. The technology allows for reducing the number of instruments required in a laboratory setting, where the same NGS instrument could be employed from whole-genome and targeted sequencing to SBA broad-range biomarker detection and genotyping. As proof-of-concept, a model assay was designed that could distinguish ten Human Papillomavirus (HPV) genotypes associated with cervical cancer progression. SBA was used to genotype 20 cervical tumor samples and, when compared with amplicon pyrosequencing, was able to detect two additional co-infections due to increased sensitivity. We also introduce in-house software Sphix, enabling easy accessibility and interpretation of results. The technology offers a multi-parallel, rapid, robust, and scalable system that is readily adaptable for a multitude of microarray diagnostic and typing applications, e. g. genetic signatures, single nucleotide polymorphisms (SNPs), structural variations, and immunoassays. SBA has the potential to dramatically change the way we perform probe-based applications, and allow for a smooth transition towards the technology offered by genomic sequencing.
  •  
6.
  • Gharizadeh, Baback, et al. (författare)
  • Detection of gyrA mutations associated with ciprofloxacin resistance in Neisseria gonorrhoeae by rapid and reliable pre-programmed short DNA sequencing
  • 2005
  • Ingår i: International Journal of Antimicrobial Agents. - : Elsevier BV. - 0924-8579 .- 1872-7913. ; 26:6, s. 486-490
  • Tidskriftsartikel (refereegranskat)abstract
    • Quinolone resistance is rapidly increasing in Neisseria gonorrhoeae and is posing a significant public health threat that requires constant surveillance. A rapid and reliable mutation detection assay has been developed. The assay is based on pre-programmed short DNA sequencing and is designed to detect point mutations in the gyrA gene that are highly related to ciprofloxacin resistance, i.e. in codons 91 and 95. By developing an assay based on pyrosequencing and exploiting the pre-programmed nucleotide dispensation capability of this technology, the sequence comprising the mutations will be analysed and promptly reveal whether the N. gonorrhoeae pathogen carries resistance to ciprofloxacin. A panel of 40 N. gonorrhoeae clinical isolates, of which 27 phenotypically displayed decreased susceptibility or resistance to ciprofloxacin, was used in the present study. All point mutations in the short stretch of the N. gonorrhoeae gyrA gene were easily discriminated, and the genotypic results obtained by pre-programmed sequencing were mainly in agreement with the phenotypically identified decreased susceptibility or resistance to ciprofloxacin. The new method used in the present study has the potential for rapid and reliable identification of known as well as previously unknown drug resistance mutations.
  •  
7.
  • Gharizadeh, Baback, et al. (författare)
  • Methodological improvements of pyrosequencing technology
  • 2006
  • Ingår i: Journal of Biotechnology. - : Elsevier BV. - 0168-1656 .- 1873-4863. ; 124:3, s. 504-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Pyrosequencing technology is a rather novel DNA sequencing method based on the sequencing-by-synthesis principle. This bioluminometric, real-time DNA sequencing technique employs a cascade of four enzymatic reactions producing sequence peak signals. The method has been proven highly suitable for single nucleotide polymorphism analysis and sequencing of short stretches of DNA. Although the pyrosequencing procedure is relatively straightforward, users may face challenges due to varying parameters in PCR and sequencing primer design, sample preparation and nucleotide dispensation; such challenges are labor and cost intensive. In this study, these issues have been addressed to increase signal quality and assure sequence accuracy.
  •  
8.
  • Gharizadeh, Baback, et al. (författare)
  • Sentinel-base DNA genotyping using multiple sequencing primers for high-risk human papillomaviruses
  • 2006
  • Ingår i: Mol Cell Probes. - : Elsevier BV. ; 20:3-4, s. 230-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the various technologies in place for genotyping human papillomaviruses (HPV), clinical use and clinical research demand a method that is fast, more reliable and cost-effective. The technology described here represents a breakthrough development in that direction. By combining the method of multiple sequencing primers with DNA sequencing, we have developed a rapid assay for genotyping HPV that relies on the identification of a single, type-specific 'sentinel' base. As described here, the prototype assay has been developed to recognize the 12 most high-risk HPV types (HPV-16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58 and 59) and is capable of recognizing and simultaneously genotyping multiple HPV co-infections. By providing sequence information on multiple HPV infections, this method eliminates the need for labor- and cost-intensive PCR cloning. These proof-of-concept studies establish the assay to be accurate, reliable, rapid, flexible, and cost-effective, providing evidence of the feasibility this technique for use in clinical settings.
  •  
9.
  • Lindbäck, Emma, et al. (författare)
  • Pyrosequencing of the DNA gyrase gene in Neisseria species : effective indicator of ciprofloxacin resistance in Neisseria gonorrhoeae
  • 2006
  • Ingår i: Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS). - : Wiley. - 0903-4641 .- 1600-0463. ; 114:12, s. 837-841
  • Tidskriftsartikel (refereegranskat)abstract
    • The quinolone resistance determining region (QRDR) of the gyrA gene in ciprofloxacin-susceptible strains (n=53) and strains of Neisseria spp. with reduced susceptibility (n=70) was determined by the pyrosequencing method. Results showed that the QRDR of the gyrA gene is an effective molecular indicator of resistance to ciprofloxacin in Neisseria gonorrhoeae, and presumably in Neisseria meningitidis, but not in all other Neisseria spp. This sequence was not unique for N. gonorrhoeae and seems unsuitable for species verification of N. gonorrhoeae. However, whether it is also possible to use this region for verification depends on the specificity of the primary screening method used.
  •  
10.
  • Unemo, Magnus, et al. (författare)
  • Molecular characterization of Neisseria gonorrhoeae identifies transmission and resistance of one ciprofloxacin-resistant strain
  • 2007
  • Ingår i: Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS). - : Wiley. - 0903-4641 .- 1600-0463. ; 115:3, s. 231-240
  • Tidskriftsartikel (refereegranskat)abstract
    • A highly discriminative and objective genetic characterization of N. gonorrhoeae, which increases our knowledge of strain populations in different geographic areas, is crucial for the development of improved control measures. In the present study, conventional phenotypic characterization and genetic characterization by means of pulsed-field gel electrophoresis (PFGE), sequencing of the entire porB gene, N. gonorrhoeae multiantigen sequence typing (NG-MAST), and pyrosequencing of a quinolone resistance determining region (QRDR) of the gyrA gene of Swedish ciprofloxacin-resistant N. gonorrhoeae serovar IB-10 isolates (n=45) were performed. The genetic characterization identified one widely spread ciprofloxacin-resistant N. gonorrhoeae ST147 strain. In addition, isolates with slightly different genetic characteristics, which presumably reflect the ongoing evolution only, were also identified. All the isolates contained single nucleotide polymorphisms in QRDR of the gyrA gene that are highly correlated with ciprofloxacin resistance. Consequently, comprehensive characterization identified the first confirmed large domestic transmission, mainly among young heterosexuals, of one ciprofloxacin-resistant N. gonorrhoeae strain in Swedish society during 2002-2003. In conclusion, a precise, i. e. genetic, characterization for identification of individual strains is a very valuable support to the crucial active surveillance of the epidemiological characteristics and the antibiotic susceptibility of N. gonorrhoeae in the effective treatment of gonorrhoea.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy