SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Akkerman V’yacheslav) "

Sökning: WFRF:(Akkerman V’yacheslav)

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abidakun, Olatunde, et al. (författare)
  • Impacts of fuel nonequidiffusivity on premixed flame propagation in channels with open ends
  • 2021
  • Ingår i: Physics of fluids. - : American Institute of Physics (AIP). - 1070-6631 .- 1089-7666. ; 33
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study scrutinizes premixed flame dynamics in micro-channels, thereby shedding light on advanced miniature micro-combustion technologies. While equidiffusive burning (when the Lewis number Le = 1) is a conventional approach adopted in numerous theoretical studies, real premixed flames are typically non-equidiffusive (Le ≠ 1), which leads to intriguing effects, such as diffusional-thermal instability. An equidiffusive computational study [V. Akkerman et al., Combust. Flame 145, 675–687 (2006)] reported regular oscillations of premixed flames spreading in channels having nonslip walls and open extremes. Here, this investigation is extended to nonequidiffusive combustion in order to systematically study the impact of the Lewis number on the flame in this geometry. The analysis is performed by means of computational simulations of the reacting flow equations with fully-compressible hydrodynamics and onestep Arrhenius chemical kinetics in channels with adiabatic and isothermal walls. In the adiabatic channels, which are the main case of study, it is found that the flames oscillate at low Lewis numbers, with the oscillation frequency decreasing with Le, while for the Le > 1 flames, a tendency to steady flame propagation is observed. The oscillation parameters also depend on the thermal expansion ratio and the channel width, although the impacts are rather quantitative than qualitative. The analysis is subsequently extended to the isothermal channels. It is shown that the role of heat losses to the walls is important and may potentially dominate over that of the Lewis number. At the same time, the impact of Le on burning in the isothermal channels is qualitatively weaker than that in the adiabatic channels.
  •  
2.
  • Adebiyi, Abdulafeez, et al. (författare)
  • Computational simulations of nonequidiffusive premixed flames in obstructed pipes
  • 2018
  • Konferensbidrag (refereegranskat)abstract
    • The impact of the Lewis number, Le, on the dynamics and morphology of a premixed flame front, spreading through a toothbrush-like array of obstacles in a semi-open channel, is studied by means of the computational simulations of the reacting flow equations with fully-compressible hydrodynamics and Arrhenius chemical kinetics. The computational approach employs a cell-centered, finite-volume numerical scheme, which is of the 2nd-order accuracy in time, 4th-order in space for the convective terms, and of the 2nd-order in space for the diffusive terms. The channels of blockage ratios 0.33∼0.67 are considered, with the Lewis numbers in the range 0.2≤Le≤2.0 employed. It is shown that the Lewis number influences the flame evolution substantially. Specifically, flame acceleration weakens for Le>1 (inherent to fuel-lean hydrogen or fuel-rich hydrocarbon burning), presumably, due to a thickening of the flame front. In contrast, Le<1 flames (such as that of rich hydrogen or lean hydrocarbon) acquire an extra strong folding of the front and thereby accelerate even much faster. The later effect can be devoted to the onset of the diffusional-Thermal combustion instability. © 2018 Eastern States Section of the Combustion Institute. All rights reserved.
  •  
3.
  • Adebiyi, Abdulafeez, et al. (författare)
  • Effect of surface friction on ultrafast flame acceleration in obstructed cylindrical pipes
  • 2019
  • Ingår i: AIP Advances. - : American Institute of Physics (AIP). - 2158-3226. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The Bychkov model of ultrafast flame acceleration in obstructed tubes [Valiev et al., "Flame Acceleration in Channels with Obstacles in the Deflagration-to-Detonation Transition," Combust. Flame 157, 1012 (2010)] employed a number of simplifying assumptions, including those of free-slip and adiabatic surfaces of the obstacles and of the tube wall. In the present work, the influence of free-slip/non-slip surface conditions on the flame dynamics in a cylindrical tube of radius R, involving an array of parallel, tightly-spaced obstacles of size αR, is scrutinized by means of the computational simulations of the axisymmetric fully-compressible gasdynamics and combustion equations with an Arrhenius chemical kinetics. Specifically, non-slip and free-slip surfaces are compared for the blockage ratio, α, and the spacing between the obstacles, ΔZ, in the ranges 1/3 ≤ α ≤ 2/3 and 0.25 ≤ ΔZ/R ≤ 2.0, respectively. For these parameters, an impact of surface friction on flameacceleration is shown to be minor, only 1-4%, slightly facilitating acceleration in a tube with ΔZ/R = 0.5 and moderating acceleration in thecase of ΔZ/R = 0.25. Given the fact that the physical boundary conditions are non-slip as far as the continuum assumption is valid, the presentwork thereby justifies the Bychkov model, employing the free-slip conditions, and makes its wider applicable to the practical reality. Whilethis result can be anticipated and explained by a fact that flame propagation is mainly driven by its spreading in the unobstructed portion ofan obstructed tube (i.e. far from the tube wall), the situation is, however, qualitatively different from that in the unobstructed tubes, wheresurface friction modifies the flame dynamics conceptually.
  •  
4.
  • Akkerman, Vyacheslav, et al. (författare)
  • Effect of gas compression on flame acceleration in obstructed cylindrical tubes
  • 2016
  • Ingår i: Spring Technical Meeting of the Eastern States Section of the Combustion Institute 2016. - : Combustion Institute; Curran Associates, Inc.. - 9781510822566
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The role of gas compression on the process of extremely fast flame acceleration in obstructed cylindrical tubes is studied analytically and validated by computational simulations. The acceleration leading to a deflagration-to-detonation transition is associated with a powerful jet-flow produced by delayed combustion in spaces between the obstacles. This acceleration mechanism is Reynolds-independent and conceptually laminar, with turbulence playing only a supplementary role. In this particular work, the incompressible formulation [Combust. Flame 157 (2010) 1012], Ref. 15 is extended to account for small but finite initial Mach number up to the first-order terms. While flames accelerate exponentially during the initial stage of propagation, when the compressibility is negligible, with continuous increase in the flame velocity with respect to the tube wall, the flame-generated compression waves subsequently moderate the acceleration process by affecting the flame shape and velocity, as well as the flow driven by the flame. It is demonstrated that the moderation effect is substantial, and as soon as gas compression is relatively small, the present theory is in good quantitative agreement with the computational simulations. The limitations of the incompressible theory are thereby underlined, and a critical blockage ratio for with this acceleration mechanism can be evaluated.
  •  
5.
  •  
6.
  • Akkerman, Vyacheslav, et al. (författare)
  • Impacts of the Lewis and Markstein numbers effects on the flame acceleration in channels
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The effects of flame stretch and thermal/molecular diffusion on the flame acceleration in channels are quantified by means of the analytical and computational endeavours. The internal transport flame properties are accounted in the theory by means of the Markstein number, Mk. Being a positive or negative function of the thermal-chemical combustion parameters, such as the thermal expansion ratio and the Lewis and Zeldovich numbers, the Markstein number either moderates or promotes the flame acceleration. While Mk may provide a substantial impact on the flame acceleration rate in narrow channels, this effects diminishes with the increase of the channel width. The analysis is accompanied by extensive computational simulations of the Navier-Stokes combustion equations, which clarify the impact of the Lewis number on the flame acceleration. It is obtained that, for Le below a certain critical value, at the initial stage of flame acceleration, a globally-convex flame front is splits into two or more "fingers", accompanied by a drastic increase in the flame surface area and associated enhancement of the flame acceleration. Overall, the thermal-diffusive effects substantially facilitate the flame acceleration scenario, thereby advancing a potential deflagration-to-detonation transition. 
  •  
7.
  •  
8.
  • Akkerman, Vyacheslav, et al. (författare)
  • Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering
  • 2011
  • Ingår i: Physical Review E, Statistical, nonlinear and soft matter physics. - : American Physical Society. - 1539-3755 .- 1550-2376. ; 83, s. 026305-
  • Tidskriftsartikel (refereegranskat)abstract
    • The formulation of Taylor on the self-similar propagation of an expanding spherical piston with constant velocity was extended to an instability-wrinkled deflagration front undergoing acceleration with RF∝tα, where RF is the instantaneous flame radius, t the time, and α a constant exponent. The formulation describes radial compression waves pushed by the front, trajectories of gas particles, and the explosion condition in the gas upstream of the front. The instant and position of explosion are determined for a given reaction mechanism. For a step-function induction time, analytic formulas for the explosion time and position are derived, showing their dependence on the reaction and flow parameters including thermal expansion, specific heat ratio, and acceleration of the front.
  •  
9.
  • Akkerman, V'yacheslav, et al. (författare)
  • Accelerating flames in cylindrical tubes with nonslip at the walls
  • 2006
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180 .- 1556-2921. ; 145:1-2, s. 206-219
  • Tidskriftsartikel (refereegranskat)abstract
    • An analytical theory of flame acceleration in cylindrical tubes with one end closed is developed. It is shown that all realistic flames with a large density drop at the front accelerate exponentially because of the nonslip at the tube walls. Such acceleration mechanism is not limited in time and, eventually, it may lead to detonation triggering. It is found that the acceleration rate decreases with the Reynolds number of the flow. On the contrary, the acceleration rate grows with the thermal expansion of the burning matter. It is shown that the flame shape and the velocity profile remain self-similar during the flame acceleration. The theory is validated by extensive direct numerical simulations. The simulations are performed for the complete set of combustion and hydrodynamic equations including thermal conduction, diffusion, viscosity, and chemical kinetics. The simulation results are in very good agreement with the analytical theory.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy