SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Akula Murali K) "

Sökning: WFRF:(Akula Murali K)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akula, Murali K, et al. (författare)
  • Control of the innate immune response by the mevalonate pathway
  • 2016
  • Ingår i: Nature Immunology. - : Springer Science and Business Media LLC. - 1529-2908 .- 1529-2916. ; 17:8, s. 922-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Deficiency in mevalonate kinase (MVK) causes systemic inflammation. However, the molecular mechanisms linking the mevalonate pathway to inflammation remain obscure. Geranylgeranyl pyrophosphate, a non-sterol intermediate of the mevalonate pathway, is the substrate for protein geranylgeranylation, a protein post-translational modification that is catalyzed by protein geranylgeranyl transferase I (GGTase I). Pyrin is an innate immune sensor that forms an active inflammasome in response to bacterial toxins. Mutations in MEFV (encoding human PYRIN) result in autoinflammatory familial Mediterranean fever syndrome. We found that protein geranylgeranylation enabled Toll-like receptor (TLR)-induced activation of phosphatidylinositol-3-OH kinase (PI(3)K) by promoting the interaction between the small GTPase Kras and the PI(3)K catalytic subunit p110 delta. Macrophages that were deficient in GGTase I or p110 delta exhibited constitutive release of interleukin 1 beta that was dependent on MEFV but independent of the NLRP3, AIM2 and NLRC4 inflammasomes. In the absence of protein geranylgeranylation, compromised PI(3)K activity allows an unchecked TLR-induced inflammatory responses and constitutive activation of the Pyrin inflammasome.
  •  
2.
  • Akula, Murali K (författare)
  • Defining the importance of protein geranylgeranylation in innate immunity
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • RHO family proteins and other intracellular proteins are prenylated with a 20-carbon lipid—a product of the cholesterol synthesis pathway—by protein geranylgeranyltransferase type I (GGTase-I). Prenylation is widely believed to target proteins to membranes where they encounter effector molecules that stimulate GTP-binding and activation. However, my host group found that knockout of GGTase-I in mouse macrophages (Pggt1bΔ/Δ) actually increases GTP-loading of RHO proteins such as RAC1, RHOA, and CDC42, and also increases proinflammatory signaling and cytokine production, and induces severe rheumatoid arthritis. These results suggest that prenylation may inhibit rather than stimulate RHO protein function. The mechanisms underlying increased GTP-loading and exaggerated innate immune responses in the absence of GGTase-I are not known. During my PhD, I have addressed these issues in two independent but interconnected projects. In project 1, we found that there is an imbalance between inflammatory and anti-inflammatory cytokines produced by Pggt1bΔ/Δ macrophages. We also found that knockout of GGTase-I prevents the interaction between KRAS and PI3K catalytic subunit p110δ and that this reduces signalling through the PI3K-AKT-GSK3β pathway. Moreover, Pggt1bΔ/Δ macrophages exhibit increased caspase-1 activity that is directly responsible for the production of active interleukin IL-1β, and that this effect requires the MEFV (pyrin) inflammasome. Thus, we conclude that GGTase-I promotes an association between KRAS and p110δ and thereby controls major inflammatory pathways in macrophages. In project 2, we tested the importance of RHO proteins in the development of arthritis in Pggt1bΔ/Δ mice. We found that knockout of Rac1 (i.e., in Pggt1bΔ/ΔRac1Δ/+ mice), but not Rhoa and Cdc42, markedly reduced inflammatory cytokine production and arthritis in Pggt1bΔ/Δ mice. We also found that non-prenylated RAC1 bound more strongly to the RAS GTPase-activating-like protein 1 (IQGAP1) – which facilitated RAC1 GTP-loading and activation. Knockout of Iqgap1 in Pggt1bΔ/Δ mice abolished cellular phenotypes in vitro and inhibited arthritis in vivo. Thus, we conclude that blocking prenylation stimulates RAC1 effector interactions and activates wide-spread pro-inflammatory signaling. Thus, prenylation normally restrains innate immune responses by inhibiting RAC1 effector interactions.
  •  
3.
  • Akula, Murali K, et al. (författare)
  • Protein prenylation restrains innate immunity by inhibiting Rac1 effector interactions
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rho family proteins are prenylated by geranylgeranyltransferase type I (GGTase-I), which normally target proteins to membranes for GTP-loading. However, conditional deletion of GGIase-I in mouse macrophages increases GTP-loading of Rho proteins, leading to enhanced inflammatory responses and severe rheumatoid arthritis. Here we show that heterozygous deletion of the Rho family gene Rac1, but not Rhoa and Cdc42, reverses inflammation and arthritis in GGTase-I-deficient mice. Non-prenylated Rac1 has a high affinity for the adaptor protein Ras GTPase-activating-like protein 1 (Iqgap1), which facilitates both GTP exchange and ubiquitination-mediated degradation of Rac1. Consistently, inactivating lagapl normalizes Rac1 GTP-loading, and reduces inflammation and arthritis in GGTase-I-deficient mice, as well as prevents statins from increasing Rac1 GTP-loading and cytokine production in macrophages. We conclude that blocking prenylation stimulates Rac1 effector interactions and unleashes proinflammatory signaling. Our results thus suggest that prenylation normally restrains innate immune responses by preventing Rac1 effector interactions.
  •  
4.
  • Balaz, M., et al. (författare)
  • Inhibition of Mevalonate Pathway Prevents Adipocyte Browning in Mice and Men by Affecting Protein Prenylation
  • 2019
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 29:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent research focusing on brown adipose tissue (BAT) function emphasizes its importance in systemic metabolic homeostasis. We show here that genetic and pharmacological inhibition of the mevalonate pathway leads to reduced human and mouse brown adipocyte function in vitro and impaired adipose tissue browning in vivo. A retrospective analysis of a large patient cohort suggests an inverse correlation between statin use and active BAT in humans, while we show in a prospective clinical trial that fluvastatin reduces thermogenic gene expression in human BAT. We identify geranylgeranyl pyrophosphate as the key mevalonate pathway intermediate driving adipocyte browning in vitro and in vivo, whose effects are mediated by geranylgeranyltransferases (GGTases), enzymes catalyzing geranylgeranylation of small GTP-binding proteins, thereby regulating YAP1/TAZ signaling through F-actin modulation. Conversely, adipocyte-specific ablation of GGTase I leads to impaired adipocyte browning, reduced energy expenditure, and glucose intolerance under obesogenic conditions, highlighting the importance of this pathway in modulating brown adipocyte functionality and systemic metabolism.
  •  
5.
  • Bandaru, Sashidar, et al. (författare)
  • Lack of RAC1 in macrophages protects against atherosclerosis.
  • 2020
  • Ingår i: PLoS One. - : Public Library of Science (PLoS). - 1932-6203. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rho GTPase RAC1 is an important regulator of cytoskeletal dynamics, but the role of macrophage-specific RAC1 has not been explored during atherogenesis. We analyzed RAC1 expression in human carotid atherosclerotic plaques using immunofluorescence and found higher macrophage RAC1 expression in advanced plaques compared with intermediate human atherosclerotic plaques. We then produced mice with Rac1-deficient macrophages by breeding conditional floxed Rac1 mice (Rac1fl/fl) with mice expressing Cre from the macrophage-specific lysosome M promoter (LC). Atherosclerosis was studied in vivo by infecting Rac1fl/fl and Rac1fl/fl/LC mice with AdPCSK9 (adenoviral vector overexpressing proprotein convertase subtilisin/kexin type 9). Rac1fl/fl/LC macrophages secreted lower levels of IL-6 and TNF-α and exhibited reduced foam cell formation and lipid uptake. The deficiency of Rac1 in macrophages reduced the size of aortic atherosclerotic plaques in AdPCSK9-infected Rac1fl/fl/LC mice. Compare with controls, intima/media ratios, the size of necrotic cores, and numbers of CD68-positive macrophages in atherosclerotic plaques were reduced in Rac1-deficient mice. Moreover, we found that RAC1 interacts with actin-binding filamin A. Macrophages expressed increased RAC1 levels in advanced human atherosclerosis. Genetic inactivation of RAC1 impaired macrophage function and reduced atherosclerosis in mice, suggesting that drugs targeting RAC1 may be useful in the treatment of atherosclerosis.
  •  
6.
  • Bandaru, Sashidar, et al. (författare)
  • Targeting filamin A reduces macrophage activity and atherosclerosis. : Filamin A in atherogenesis
  • 2019
  • Ingår i: Circulation. - 1524-4539. ; 140:1, s. 67-79
  • Tidskriftsartikel (refereegranskat)abstract
    • The actin-binding protein FLNA (filamin A) regulates signal transduction important for cell locomotion, but the role of macrophage-specific FLNA during atherogenesis has not been explored.We analyzed FLNA expression in human carotid atherosclerotic plaques by immunofluorescence. We also produced mice with Flna-deficient macrophages by breeding conditional Flna-knockout mice ( Flna o/fl) with mice expressing Cre from the macrophage-specific lysosome M promoter ( LC). Atherosclerosis in vivo was studied by transplanting bone marrow from male Flna o/fl/ LC mice to atherogenic low-density lipoprotein receptor-deficient ( Ldlr-/-) mice; and by infecting Flna o/fl and Flna o/fl/ LC mice with AdPCSK9 (adenoviral vector overexpressing proprotein convertase subtilisin/kexin type 9). Furthermore, C57BL/6 mice were infected with AdPCSK9 and then treated with the calpain inhibitor calpeptin to inhibit FLNA cleavage.We found that macrophage FLNA expression was higher in advanced than in intermediate human atherosclerotic plaques. Flna o/fl/ LC macrophages proliferated and migrated less than controls; expressed lower levels of phosphorylated AKT and ERK1/2; exhibited reduced foam cell formation and lipid uptake; and excreted more lipids. The deficiency of Flna in macrophages markedly reduced the size of aortic atherosclerotic plaques in both Ldlr-/-BMT: Flnao/fl/LC and AdPCSK9-infected Flna o/fl/ LC mice. Intima/media ratios and numbers of CD68-positive macrophages in atherosclerotic plaques were lower in Flna-deficient mice than in control mice. Moreover, we found that STAT3 interacts with a calpain-cleaved carboxyl-terminal fragment of FLNA. Inhibiting calpain-mediated FLNA cleavage with calpeptin in macrophages reduced nuclear levels of phosphorylated STAT3, interleukin 6 secretion, foam cell formation, and lipid uptake. Finally, calpeptin treatment reduced the size of atherosclerotic plaques in C57BL/6 mice infected with AdPCSK9.Genetic inactivation of Flna and chemical inhibition of calpain-dependent cleavage of FLNA impaired macrophage signaling and function, and reduced atherosclerosis in mice, suggesting that drugs targeting FLNA may be useful in the treatment of atherosclerosis.
  •  
7.
  • Ibrahim, Mohamed X, et al. (författare)
  • Targeting Isoprenylcysteine Methylation Ameliorates Disease in a Mouse Model of Progeria
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 340:6138, s. 1330-1333
  • Tidskriftsartikel (refereegranskat)abstract
    • Several progeroid disorders, including Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (ZMPSTE24 deficiency), arise when a farnesylated and methylated form of prelamin A accumulates at the nuclear envelope. Here, we found that a hypomorphic allele of isoprenylcysteine carboxyl methyltransferase (ICMT) increased body weight, normalized grip strength, and prevented bone fractures and death in Zmpste24-deficient mice. The reduced ICMT activity caused prelamin A mislocalization within the nucleus and triggered prelamin A-dependent activation of AKT-mammalian target of rapamycin (mTOR) signaling, which abolished the premature senescence of Zmpste24-deficient fibroblasts. ICMT inhibition increased AKT-mTOR signaling and proliferation and delayed senescence in human HGPS fibroblasts but did not reduce the levels of misshapen nuclei in mouse and human cells. Thus, targeting ICMT might be useful for treating prelamin A-associated progeroid disorders.
  •  
8.
  •  
9.
  • Khan, Omar M., 1980, et al. (författare)
  • Targeting GGTase-I Activates RHOA, Increases Macrophage Reverse Cholesterol Transport, and Reduces Atherosclerosis in Mice
  • 2013
  • Ingår i: Circulation. - : Ovid Technologies (Wolters Kluwer Health). - 0009-7322 .- 1524-4539. ; 127:7, s. 782-790
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-Statins have antiinflammatory and antiatherogenic effects that have been attributed to inhibition of RHO protein geranylgeranylation in inflammatory cells. The activity of protein geranylgeranyltransferase type I (GGTase-I) is widely believed to promote membrane association and activation of RHO family proteins. However, we recently showed that knockout of GGTase-I in macrophages activates RHO proteins and proinflammatory signaling pathways, leading to increased cytokine production and rheumatoid arthritis. In this study, we asked whether the increased inflammatory signaling of GGTase-I-deficient macrophages would influence the development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Methods and Results-Aortic lesions in mice lacking GGTase-I in macrophages (Pggt1b Delta/Delta) contained significantly more T lymphocytes than the lesions in controls. Surprisingly, however, mean atherosclerotic lesion area in Pggt1b Delta/Delta mice was reduced by approximate to 60%. GGTase-I deficiency reduced the accumulation of cholesterol esters and phospholipids in macrophages incubated with minimally modified and acetylated low-density lipoprotein. Analyses of GGTase-I-deficient macrophages revealed upregulation of the cyclooxygenase 2-peroxisome proliferator-activated-gamma pathway and increased scavenger receptor class B type I-and CD36-mediated basal and high-density lipoprotein-stimulated cholesterol efflux. Lentivirus-mediated knockdown of RHOA, but not RAC1 or CDC42, normalized cholesterol efflux. The increased cholesterol efflux in cultured cells was accompanied by high levels of macrophage reverse cholesterol transport and slightly reduced plasma lipid levels in vivo. Conclusions-Targeting GGTase-I activates RHOA and leads to increased macrophage reverse cholesterol transport and reduced atherosclerosis development despite a significant increase in inflammation
  •  
10.
  • Le Gal, Kristell, et al. (författare)
  • Antioxidants can increase melanoma metastasis in mice.
  • 2015
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6242 .- 1946-6234. ; 7:308
  • Tidskriftsartikel (refereegranskat)abstract
    • Antioxidants in the diet and supplements are widely used to protect against cancer, but clinical trials with antioxidants do not support this concept. Some trials show that antioxidants actually increase cancer risk and a study in mice showed that antioxidants accelerate the progression of primary lung tumors. However, little is known about the impact of antioxidant supplementation on the progression of other types of cancer, including malignant melanoma. We show that administration of N-acetylcysteine (NAC) increases lymph node metastases in an endogenous mouse model of malignant melanoma but has no impact on the number and size of primary tumors. Similarly, NAC and the soluble vitamin E analog Trolox markedly increased the migration and invasive properties of human malignant melanoma cells but did not affect their proliferation. Both antioxidants increased the ratio between reduced and oxidized glutathione in melanoma cells and in lymph node metastases, and the increased migration depended on new glutathione synthesis. Furthermore, both NAC and Trolox increased the activation of the small guanosine triphosphatase (GTPase) RHOA, and blocking downstream RHOA signaling abolished antioxidant-induced migration. These results demonstrate that antioxidants and the glutathione system play a previously unappreciated role in malignant melanoma progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy