SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Al Hawasi Abbas 1976 ) "

Sökning: WFRF:(Al Hawasi Abbas 1976 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Hawasi, Abbas, 1976- (författare)
  • Retinal ganglion cell examination with Optical Coherence Tomography reflects physiological and pathological changes in the eye and the brain.
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The retinal ganglion cell is situated in the inner retina and its axons, composing the retinal nerve fiber layer (RNFL), leave the eye to form the optic nerve. These cells develop embryologically from the forebrain and later during development re-establish connections with different parts of the brain serving different purposes. This unique position and connections make it possible to be investigated with different methods. Optical Coherence Tomography (OCT) is an accessible and easily operated clinical device that can provide a detailed image of this layer at a few micrometers level of precision in measurements. In this thesis we aimed to see whether examining these cells with OCT could reflect physiological and pathological changes in the eye and brain.In cases of optic neuritis (Paper I), the OCT examination showed early thickening of the peripapillary (pRNFL) followed by thinning which takes 6-9 months to reduce to below normal thickness without the ability to distinguish between the real from pseudo thinning. The ganglion cell -inner plexiform layer (GCL-IPL) layer, however, showed a thickness reduction within a few weeks to 3 months without pseudo thinning.         In cases of Idiopathic Intracranial Hypertension (IIH) (Paper II), the GCL-IPL remained unchanged and there was no difference in pRNFL thickness compared to healthy controls, whereas  the optic disc parameters of rim thickness, rim area, cup volume and cup/disc ratio differed significantly (P<0.05).In cases of benign multiple sclerosis (Paper IV), the OCT could detect that eyes which are not affected by optic neuritis had an annual thinning rate of the RNFL and GCL-IPL similar to a healthy population (P>0.05) which may indicate the benign course of the disease.       In cases of physiological factors affecting the GCL in healthy population (Paper III) the OCT examination showed that there was a significant thinning rate of the layer with age (P<0.05), but the thinning was not significant when sex and axial length of the eye were taken into consideration. Males had a thicker GCL volume than females and with age a significant reduction in GCL volume was noted in females but not in males. A Longer axial length of the eye found to be associated with thinner GCL volume.     In conclusion retinal ganglion cell changes detected with OCT can reflect physiological and pathological changes in the eye and brain.   
  •  
2.
  • Al-Hawasi, Abbas, 1976-, et al. (författare)
  • Retinal ganglion cell layer thickness and volume measured by OCT changes with age, sex, and axial length in a healthy population
  • 2022
  • Ingår i: BMC Ophthalmology. - : BMC. - 1471-2415. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The ganglion cell layer (GCL) measurements with Optical Coherence Tomography (OCT) are important for both ophthalmologists and neurologists because of their association with many ophthalmic and neurological diseases. Different factors can affect these measurements, such as brain pathologies, ocular axial length (AL) as well as age and sex. Studies conducted to measure the GCL have overlooked many of these factors. The purpose of this study is to examine the effect of age, sex, and AL on normal retinal GCL thickness and volume in a healthy population without any neurological diseases. Methods A prospective cross-sectional study was designed to measure GCL thickness and total volume with OCT with automated segmentation and manual correction where needed. Visual acuity, AL, and autorefraction were also measured. A mixed linear model was used to determine the association of the effect of the various parameters on the GCL thickness and volume. Results One hundred and sixteen eyes of 60 subjects (12-76 years of age, 55% female) were examined of which 77% had 0 +/- 2 D of spherical equivalent, and mean axial length was 23.86 mm. About 25% of the OCT-automated GCL measurements required manual correction. GCL thickness did not differ in similar anatomic regions in right and left eyes (P > 0.05). GCL volume was greater in males relative to females after adjustment for age and axial length (1.13 +/- 0.07 mm(3) for males vs 1.09 +/- 0.09 mm(3) for females; P = 0.031). GCL thickness differed between males and females in the inner retinal ring (P = 0.025) but not in the outer ring (P = 0.66). GCL volume declined with age (P = 0.031) but not after adjustment for sex and axial length (P = 0.138). GCL volume declined with longer axial length after adjustment for age and sex (P = 0.048). Conclusion Age, sex and axial length should be taken into consideration when measuring the GCL thickness and volume with OCT. Automated OCT segmentation should be reviewed for manual adjustments.
  •  
3.
  • Pivodic, Aldina, 1978, et al. (författare)
  • Prognostic Value of Parenteral Nutrition Duration on Risk of Retinopathy of Prematurity Development and Validation of the Revised DIGIROP Clinical Decision Support Tool
  • 2023
  • Ingår i: JAMA ophthalmology. - : AMER MEDICAL ASSOC. - 2168-6165 .- 2168-6173. ; 141:8, s. 716-724
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE The prognostic impact of parenteral nutrition duration (PND) on retinopathy of prematurity (ROP) is not well studied. Safe prediction models can help optimize ROP screening by effectively discriminating high-risk from low-risk infants. OBJECTIVE To evaluate the prognostic value of PND on ROP; to update and validate the Digital ROP (DIGIROP) 2.0 birth into prescreen and screen prediction models to include all ROP-screened infants regardless of gestational age (GA) and incorporate PND; and to compare the DIGIROP model with the Weight, IGF-1, Neonatal, and ROP (WINROP) and Postnatal Growth and ROP (G-ROP) models. DESIGN, SETTING, AND PARTICIPANTS This retrospective study included 11 139 prematurely born infants from 2007 to 2020 from the Swedish National Registry for ROP. Extended Poisson and logistic models were applied. Data were analyzed from August 2022 to February 2023. MAIN OUTCOMES AND MEASURES Any ROP and ROP requiring treatment were studied in relation to PND. ROP treatment was the outcome in DIGIROP models. Sensitivity, specificity, area under the receiver operating characteristic curve, and adjusted OR (aOR) with 95% CI were the main measures. Internal and external validations were performed. RESULTS Of 11 139 screened infants, 5071 (45.5%) were girls, and the mean (SD) gestational age was 28.5 (2.4) weeks. ROP developed in 3179 infants (29%), treatment was given in 599 (5%), 7228 (65%) had PND less than 14 days, 2308 (21%) had PND for 14 days or more, and 1603 (14%) had unknown PND. PND was significantly correlated with ROP severity (Spearman r = 0.45; P < .001). Infants with 14 days or more of PND vs less than 14 days had faster progression from any ROP to ROP treatment (adjusted mean difference, -0.9 weeks; 95% CI, -1.5 to -0.3; P = .004). Infants with PND for 14 days or more vs less than 14 days had higher odds of any ROP (aOR, 1.84; 95% CI, 1.62-2.10; P < .001) and of severe ROP requiring treatment (aOR, 2.20; 95% CI, 1.73-2.80; P < .001). Among all 11 139 infants, the DIGIROP 2.0 models had 100% sensitivity (95% CI, 99.4-100). The specificity was 46.6%(95% CI, 45.6-47.5) for the prescreen model and 76.9%(95% CI, 76.1-77.7) for the screen model. G-ROP as well as the DIGIROP 2.0 prescreen and screen models showed 100% sensitivity on a validation subset (G-ROP: sensitivity, 100%; 95% CI, 93-100; DIGIROP prescreen: sensitivity, 100%; 95% CI, 93-100; DIGIROP screen: sensitivity, 100%; 95% CI, 93-100), whereas WINROP showed 89% sensitivity (95% CI, 77-96). Specificity for each prediction model was 29% (95% CI, 22-36) for G-ROP, 38%(95% CI, 32-46) for DIGIROP prescreen, 53%(95% CI, 46-60) for DIGIROP screen at 10 weeks, and 46%(95% CI, 39-53) for WINROP. CONCLUSION AND RELEVANCE Based on more than 11 000 ROP-screened infants born in Sweden, PND of 14 days or more corresponded to a significantly higher risk of having any ROP and receiving ROP treatment. These findings provide evidence to support consideration of using the updated DIGIROP 2.0 models instead of the WINROP or G-ROP models in the management of ROP.
  •  
4.
  • Pivodic, Aldina, 1978, et al. (författare)
  • Validation of DIGIROP models and decision support tool for prediction of treatment for retinopathy of prematurity on a contemporary Swedish cohort
  • 2023
  • Ingår i: British Journal of Ophthalmology. - : BMJ. - 0007-1161 .- 1468-2079. ; 107:8, s. 1132-1138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aims Retinopathy of prematurity (ROP) is currently diagnosed through repeated eye examinations to find the low percentage of infants that fulfil treatment criteria to reduce vision loss. A prediction model for severe ROP requiring treatment that might sensitively and specifically identify infants that develop severe ROP, DIGIROP-Birth, was developed using birth characteristics. DIGIROP-Screen additionally incorporates first signs of ROP in different models over time. The aim was to validate DIGIROP-Birth, DIGIROP-Screen and their decision support tool on a contemporary Swedish cohort. Methods Data were retrieved from the Swedish national registry for ROP (2018-2019) and two Swedish regions (2020), including 1082 infants born at gestational age (GA) 24 to <31 weeks. The predictors were GA at birth, sex, standardised birth weight and age at the first sign of ROP. The outcome was ROP treatment. Sensitivity, specificity and area under the receiver operating characteristic curve (AUC) with 95% CI were described. Results For DIGIROP-Birth, the AUC was 0.93 (95% CI 0.90 to 0.95); for DIGIROP-Screen, it ranged between 0.93 and 0.97. The specificity was 49.9% (95% CI 46.7 to 53.0) and the sensitivity was 96.5% (95% CI 87.9 to 99.6) for the tool applied at birth. For DIGIROP-Screen, the cumulative specificity ranged between 50.0% and 78.7%. One infant with Beckwith-Wiedemann syndrome who fulfilled criteria for ROP treatment and had no missed/incomplete examinations was incorrectly flagged as not needing screening. Conclusions DIGIROP-Birth and DIGIROP-Screen showed high predictive ability in a contemporary Swedish cohort. At birth, 50% of the infants born at 24 to <31 weeks of gestation were predicted to have low risk of severe ROP and could potentially be released from ROP screening examinations. All routinely screened treated infants, excluding those screened for clinical indications of severe illness, were correctly flagged as needing ROP screening.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy