SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Al Hraishawi Hayder) "

Sökning: WFRF:(Al Hraishawi Hayder)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Hraishawi, Hayder, et al. (författare)
  • Energy Harvesting from Jamming Attacks in Multi-User Massive MIMO Networks
  • 2023
  • Ingår i: IEEE Transactions on Green Communications and Networking. - : Institute of Electrical and Electronics Engineers (IEEE). - 2473-2400. ; 7:3, s. 1181-1191
  • Tidskriftsartikel (refereegranskat)abstract
    • Fifth-generation (5G) and beyond communication systems offer new functionalities and significant performance improvements but that comes at the cost of tougher energy requirements on user devices. Addressing this issue while reducing the environmental impact of the substantial increase in energy consumption can be achieved through energy-neutral systems that operate using energy harvested from radio frequency (RF) transmissions. In this direction, this work examines the concept of utilizing an unconventional source for RF energy harvesting. Specifically, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to exploit the jamming transmissions as an energy source to be harvested by the legitimate users. To this end, the feasibility of this concept is studied via system performance analysis for a training-based massive MIMO encompasses imperfectly estimated channel state information (CSI) at the base-station and employing the time-switching protocol. In particular, the achievable uplink sum rate expressions are derived in closed-form for two different antenna configurations at the base-station. Two optimal time-switching schemes are also proposed based on maximum sum rate and user-fairness criteria. The essential trade-off between the harvested energy and achievable sum rate in time-switching protocol are quantified in closed-form as well. Our analysis reveals that the proposed energy harvesting scheme from jamming signals is viable and can boost massive MIMO uplink performance by exploiting the surrounding RF signals of the jamming attacks for increasing the amount of harvested energy at the served users. Finally, numerical results validate the theoretical analyses and the effectiveness of the derived closed-form expressions through simulations.
  •  
2.
  • Al-Hraishawi, Hayder, et al. (författare)
  • Multi-Cell Massive MIMO Uplink With Underlay Spectrum Sharing
  • 2019
  • Ingår i: IEEE Transactions on Cognitive Communications and Networking. - : IEEE. - 2332-7731. ; 5:1, s. 119-137
  • Tidskriftsartikel (refereegranskat)abstract
    • The achievable rates are investigated for multicell multi-user massive multiple-input multiple-output (MIMO) systems with underlay spectrum sharing. A general pilot sharing scheme and two pilot sequence designs (PSDs) are investigated via fully shared (PSD-1) and partially shared (PSD-2) uplink pilots. The number of simultaneously served primary users and secondary users (SUs) in the same time-frequency resource block by the PSD-1 is higher than that of PSD-2. The transmit power constraints for the SUs are derived to mitigate the secondary co-channel interference (CCI) inflicted at the primary base-station (PBS) subject to a predefined primary interference temperature (PIT). The optimal transmit power control coefficients for the SUs with max-min fairness and the common achievable rates are derived. The cumulative detrimental effects of channel estimation errors, CCI and intra-cell/inter-cell pilot contamination are investigated. The secondary transmit power constraint and the achievable rates for the perfect channel state information (CSI) case become independent of the PIT when the number of PBS antennas grows unbounded. Therefore, the primary and secondary systems can be operated independent of each other as both intra-cell and inter-cell interference can be asymptotically mitigated at the massive MIMO PBS and secondary base-station. Nevertheless, the achievable rates and secondary power constraints for the imperfect CSI case with PSD-1 are severely degraded due to the presence of intra-cell and inter-cell pilot contamination. These performance metrics depend on the PIT even in the asymptotic PBS antenna regime. Hence, the primary and secondary systems can no longer be operated independently for imperfect CSI with PSD-1. However, PSD-2 provides an achievable rate gain over PSD-1 despite the requirement of lengthier pilot sequences of the former than that of the latter.
  •  
3.
  • Dazhi, Michael N., et al. (författare)
  • Energy-Efficient Service-Aware Multi-Connectivity Scheduler for Uplink Multi-Layer Non-Terrestrial Networks
  • 2023
  • Ingår i: IEEE Transactions on Green Communications and Networking. - : Institute of Electrical and Electronics Engineers (IEEE). - 2473-2400. ; 7:3, s. 1326-1341
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper introduces the concept of energy efficiency (EE) in the uplink with the capability of multi-connectivity (MC) in a multi-orbit non-terrestrial network (NTN), where user terminals (UTs) can be simultaneously served by more than one satellite to achieve higher peak throughput at reduced energy consumption. This concept also considers the service classification of the users, so that network dimensioning is performed in order to satisfy the quality of service (QoS) requirement of users. MC can increase throughput, but this entails increased power consumption at user terminal for uplink transmissions. To this end, an energy-efficient service-aware multi-connectivity (EE-SAMC) scheduling algorithm is developed in this paper to improve the EE of uplink communications. EE-SAMC uses available radio resources and propagation information to intelligently define a dynamic resource allocation pattern, that optimally routes traffic so as to reduce the energy consumption at the UT while ensuring QoS is maximized. EE-SAMC is designed based on the formulation of a non-convex combinatorial problem, it is solved in two ways involving firstly an optimization solution and secondly a heuristic approach. The effectiveness of EE-SAMC is compared with random allocation, round robin and heuristic schedulers in terms of EE, throughput and delay; EE-SAMC outperforms all schedulers.
  •  
4.
  • Kibria, Mirza Golam, et al. (författare)
  • Joint Beam Hopping and Carrier Aggregation in High Throughput Multi-Beam Satellite Systems
  • 2022
  • Ingår i: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 10, s. 122125-122135
  • Tidskriftsartikel (refereegranskat)abstract
    • Beam hopping (BH) and carrier aggregation (CA) are two promising technologies for the next generation satellite communication systems to achieve several orders of magnitude increase in system capacity and to significantly improve the spectral efficiency. While BH allows a great flexibility in adapting the offered capacity to the heterogeneous demand, CA further enhances the user quality-of-service (QoS) by allowing it to pool resources from multiple adjacent beams. In this paper, we consider a multi-beam high throughput satellite (HTS) system that employs BH in conjunction with CA to capitalize on the mutual interplay between both techniques. Particularly, an innovative joint BH-CA scheme is proposed and analyzed in this work to utilize their individual competencies. This includes designing an efficient joint time-space beam illumination pattern for BH and multi-user aggregation strategy for CA. Through this, user-carrier assignment, transponder filling-rates, beams hopping pattern, and illumination duration are all simultaneously optimized by formulating a joint optimization problem as a multi-objective mixed integer linear programming problem (MINLP). Simulation results are provided to corroborate our analysis, demonstrate the design tradeoffs, and point out the potentials of the proposed joint BH-CA concept. Advantages of our BH-CA scheme versus the conventional BH method without employing CA are investigated and presented under the same system circumstances.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy