SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Al Shahrour Fatima) "

Sökning: WFRF:(Al Shahrour Fatima)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  • Apellániz-Ruiz, Maria, et al. (författare)
  • Targeted sequencing reveals low-frequency variants in EPHA genes as markers of paclitaxel-induced peripheral neuropathy.
  • 2017
  • Ingår i: Clinical Cancer Research. - : American Association of Cancer Research. - 1078-0432 .- 1557-3265. ; 23:5, s. 1227-1235
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Neuropathy is the dose limiting toxicity of paclitaxel and a major cause for decreased quality of life. Genetic factors have been shown to contribute to paclitaxel neuropathy susceptibility; however, the major causes for inter-individual differences remain unexplained. In this study we identified genetic markers associated with paclitaxel-induced neuropathy through massive sequencing of candidate genes.EXPERIMENTAL DESIGN: We sequenced the coding region of 4 EPHA genes, 5 genes involved in paclitaxel pharmacokinetics and 30 Charcot-Marie-Tooth genes, in 228 cancer patients with no/low neuropathy or high grade neuropathy during paclitaxel treatment. An independent validation series included 202 paclitaxel-treated patients. Variation-/ gene-based analyses were used to compare variant frequencies among neuropathy groups and Cox regression models were used to analyze neuropathy evolution along treatment.RESULTS: Gene-based analysis identified EPHA6 as the gene most significantly associated with paclitaxel-induced neuropathy. Low frequency non-synonymous variants in EPHA6 were present exclusively in patients with high neuropathy and all affected the ligand binding domain. Accumulated dose analysis in the discovery series showed a significantly higher neuropathy risk for EPHA5/6/8 low-frequency non-synonymous variant carriers (HR=14.60, 95%CI=2.33-91.62, P=0.0042) and an independent cohort confirmed an increased neuropathy risk (HR=2.07, 95%CI=1.14-3.77, P=0.017). Combining the series gave an estimated 2.50-fold higher risk of neuropathy (95%CI=1.46-4.31; P=9.1x10(-4)).CONCLUSION: This first study sequencing EPHA genes revealed that low frequency variants in EPHA6, EPHA5 and EPHA8 contribute to the susceptibility to paclitaxel-induced neuropathy. Furthermore, EPHAs neuronal injury repair function suggests that these genes might constitute important neuropathy markers for many neurotoxic drugs.
  •  
3.
  • Castaño, Zafira, et al. (författare)
  • Stromal EGF and igf-I together modulate plasticity of disseminated triple-negative breast tumors
  • 2013
  • Ingår i: Cancer Discovery. - 2159-8274. ; 3:8, s. 922-935
  • Tidskriftsartikel (refereegranskat)abstract
    • The causes for malignant progression of disseminated tumors and the reasons recurrence rates differ in women with different breast cancer subtypes are unknown. Here, we report novel mechanisms of tumor plasticity that are mandated by microenvironmental factors and show that recurrence rates are not strictly due to cell-intrinsic properties. Specifically, outgrowth of the same population of incipient tumors is accelerated in mice with triple-negative breast cancer (TNBC) relative to those with luminal breast cancer. Systemic signals provided by overt TNBCs cause the formation of a tumor-supportive microenvironment enriched for EGF and insulin-like growth factor-I (IGF-I) at distant indolent tumor sites. Bioavailability of EGF and IGF-I enhances the expression of transcription factors associated with pluripotency, proliferation, and epithelial-mesenchymal transition. Combinatorial therapy with EGF receptor and IGF-I receptor inhibitors prevents malignant progression. These results suggest that plasticity and recurrence rates can be dictated by host systemic factors and offer novel therapeutic potential for patients with TNBC.
  •  
4.
  • Jiao, Wei, et al. (författare)
  • A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • In cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA.
  •  
5.
  • Järås, Marcus, et al. (författare)
  • Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia
  • 2014
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 211:4, s. 605-612
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite extensive insights into the underlying genetics and biology of acute myeloid leukemia (AML), overall survival remains poor and new therapies are needed. We found that casein kinase 1 alpha (Csnk1a1), a serine-threonine kinase, is essential for AML cell survival in vivo. Normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected by shRNA-mediated knockdown of Csnk1a1. To identify downstream mediators of Csnk1a1 critical for leukemia cells, we performed an in vivo pooled shRNA screen and gene expression profiling. We found that Csnk1a1 knockdown results in decreased Rps6 phosphorylation, increased p53 activity, and myeloid differentiation. Consistent with these observations, p53-null leukemias were insensitive to Csnk1a1 knockdown. We further evaluated whether D4476, a casein kinase 1 inhibitor, would exhibit selective antileukemic effects. Treatment of leukemia stem cells (LSCs) with D4476 showed highly selective killing of LSCs over normal HSPCs. In summary, these findings demonstrate that Csnk1a1 inhibition causes reduced Rps6 phosphorylation and activation of p53, resulting in selective elimination of leukemia cells, revealing Csnk1a1 as a potential therapeutic target for the treatment of AML.
  •  
6.
  • Li, Constance H., et al. (författare)
  • Sex differences in oncogenic mutational processes
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.
  •  
7.
  • Nilsson, Björn, et al. (författare)
  • Ultrasome : efficient aberration caller for copy number studies of ultra-high resolution
  • 2009
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811 .- 1460-2059. ; 25:8, s. 1078-1079
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Multimillion-probe microarrays allow detection of gains and losses of chromosomal material at unprecedented resolution. However, the data generated by these arrays are several-fold larger than data from earlier platforms, creating a need for efficient analysis tools that scale robustly with data size.  Results: We developed a new aberration caller, Ultrasome, that delineates genomic changes-of-interest with dramatically improved efficiency. Ultrasome shows near-linear computational complexity and processes latest generation copy number arrays about 10 000 times faster than standard methods with preserved analytic accuracy.
  •  
8.
  • Puram, Rishi V, et al. (författare)
  • Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML
  • 2016
  • Ingår i: Cell. - : Elsevier BV. - 1097-4172 .- 0092-8674. ; 165:2, s. 16-303
  • Tidskriftsartikel (refereegranskat)abstract
    • Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial transplantation in animal models, and elimination of this cell population is required for curative therapies. Here, we describe a series of pooled, in vivo RNAi screens to identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) with genetically and phenotypically defined LSCs. These screens reveal the heterodimeric, circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We find that both normal and malignant hematopoietic cells harbor an intact clock with robust circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the pathway. Our findings establish a role for the core circadian clock genes in AML.
  •  
9.
  • Riba, Michela, et al. (författare)
  • The 1+Million Genomes Minimal Dataset for Cancer
  • 2024
  • Ingår i: Nature Genetics. - 1061-4036. ; 56:5, s. 733-736
  • Tidskriftsartikel (refereegranskat)abstract
    • Defining minimal standards for data collection is key to creating interoperative, searchable genomic and clinical databases. We highlight here the 1+Million Genomes Minimal Dataset for Cancer, encompassing 140 items in 8 domains to foster the collection of cancer data, inform transnational cooperation and advance precision cancer medicine.
  •  
10.
  • Vu, Ly P., et al. (författare)
  • Functional screen of MSI2 interactors identifies an essential role for SYNCRIP in myeloid leukemia stem cells
  • 2017
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 49:6, s. 866-875
  • Tidskriftsartikel (refereegranskat)abstract
    • The identity of the RNA-binding proteins (RBPs) that govern cancer stem cells remains poorly characterized. The MSI2 RBP is a central regulator of translation of cancer stem cell programs. Through proteomic analysis of the MSI2-interacting RBP network and functional shRNA screening, we identified 24 genes required for in vivo leukemia. Syncrip was the most differentially required gene between normal and myeloid leukemia cells. SYNCRIP depletion increased apoptosis and differentiation while delaying leukemogenesis. Gene expression profiling of SYNCRIP-depleted cells demonstrated a loss of the MLL and HOXA9 leukemia stem cell program. SYNCRIP and MSI2 interact indirectly though shared mRNA targets. SYNCRIP maintains HOXA9 translation, and MSI2 or HOXA9 overexpression rescued the effects of SYNCRIP depletion. Altogether, our data identify SYNCRIP as a new RBP that controls the myeloid leukemia stem cell program. We propose that targeting these RBP complexes might provide a novel therapeutic strategy in leukemia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy