SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Alajmi Mohamed F.) "

Search: WFRF:(Alajmi Mohamed F.)

  • Result 1-10 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Khalifa, Shaden A. M., et al. (author)
  • Overview of Bee Pollination and Its Economic Value for Crop Production
  • 2021
  • In: Insects. - : MDPI AG. - 2075-4450. ; 12:8
  • Research review (peer-reviewed)abstract
    • Pollination plays a significant role in the agriculture sector and serves as a basic pillar for crop production. Plants depend on vectors to move pollen, which can include water, wind, and animal pollinators like bats, moths, hoverflies, birds, bees, butterflies, wasps, thrips, and beetles. Cultivated plants are typically pollinated by animals. Animal-based pollination contributes to 30% of global food production, and bee-pollinated crops contribute to approximately one-third of the total human dietary supply. Bees are considered significant pollinators due to their effectiveness and wide availability. Bee pollination provides excellent value to crop quality and quantity, improving global economic and dietary outcomes. This review highlights the role played by bee pollination, which influences the economy, and enlists the different types of bees and other insects associated with pollination.
  •  
2.
  • Yosri, Nermeen, et al. (author)
  • Anti-Viral and Immunomodulatory Properties of Propolis : Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2
  • 2021
  • In: Foods. - : MDPI AG. - 2304-8158. ; 10:8
  • Research review (peer-reviewed)abstract
    • Propolis, a resin produced by honeybees, has long been used as a dietary supplement and folk remedy, and more recent preclinical investigations have demonstrated a large spectrum of potential therapeutic bioactivities, including antioxidant, antibacterial, anti-inflammatory, neuroprotective, immunomodulatory, anticancer, and antiviral properties. As an antiviral agent, propolis and various constituents have shown promising preclinical efficacy against adenoviruses, influenza viruses, respiratory tract viruses, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 300 chemical components have been identified in propolis, including terpenes, flavonoids, and phenolic acids, with the specific constituent profile varying widely according to geographic origin and regional flora. Propolis and its constituents have demonstrated potential efficacy against SARS-CoV-2 by modulating multiple pathogenic and antiviral pathways. Molecular docking studies have demonstrated high binding affinities of propolis derivatives to multiple SARS-CoV-2 proteins, including 3C-like protease (3CL(pro)), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), the receptor-binding domain (RBD) of the spike protein (S-protein), and helicase (NSP13), as well as to the viral target angiotensin-converting enzyme 2 (ACE2). Among these compounds, retusapurpurin A has shown high affinity to 3CL(pro) (Delta G = -9.4 kcal/mol), RdRp (-7.5), RBD (-7.2), NSP13 (-9.4), and ACE2 (-10.4) and potent inhibition of viral entry by forming hydrogen bonds with amino acid residues within viral and human target proteins. In addition, propolis-derived baccharin demonstrated even higher binding affinity towards PLpro (-8.2 kcal/mol). Measures of drug-likeness parameters, including metabolism, distribution, absorption, excretion, and toxicity (ADMET) characteristics, also support the potential of propolis as an effective agent to combat COVID-19.
  •  
3.
  • El-Aarag, Bishoy, et al. (author)
  • Melittin Exerts Beneficial Effects on Paraquat-Induced Lung Injuries in Mice by Modifying Oxidative Stress and Apoptosis
  • 2019
  • In: Molecules. - : MDPI AG. - 1431-5157 .- 1420-3049. ; 24:8
  • Journal article (peer-reviewed)abstract
    • Melittin (MEL) is a 26-amino acid peptide with numerous biological activities. Paraquat (PQ) is one of the most widely used herbicides, although it is extremely toxic to humans. To date, PQ poisoning has no effective treatment, and therefore the current study aimed to assess for the first time the possible effects of MEL on PQ-induced lung injuries in mice. Mice received a single intraperitoneal (IP) injection of PQ (30 mg/kg), followed by IP treatment with MEL (0.1 and 0.5 mg/kg) twice per week for four consecutive weeks. Histological alterations, oxidative stress, and apoptosis in the lungs were studied. Hematoxylin and eosin (H&E) staining indicated that MEL markedly reduced lung injuries induced by PQ. Furthermore, treatment with MEL increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity, and decreased malonaldehyde (MDA) and nitric oxide (NO) levels in lung tissue homogenates. Moreover, immunohistochemical staining showed that B-cell lymphoma-2 (Bcl-2) and survivin expressions were upregulated after MEL treatment, while Ki-67 expression was downregulated. The high dose of MEL was more effective than the low dose in all experiments. In summary, MEL efficiently reduced PQ-induced lung injuries in mice. Specific pharmacological examinations are required to determine the effectiveness of MEL in cases of human PQ poisoning.
  •  
4.
  • El-Seedi, Hesham R., et al. (author)
  • Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari : Ixodidae)
  • 2017
  • In: Experimental & applied acarology. - : Springer. - 0168-8162 .- 1572-9702. ; 73:1, s. 139-157
  • Journal article (peer-reviewed)abstract
    • Due to the role of Ixodes ricinus (L.) (Acari: Ixodidae) in the transmission of many serious pathogens, personal protection against bites of this tick is essential. In the present study the essential oils from 11 aromatic Egyptian plants were isolated and their repellent activity against I. ricinus nymphs was evaluated Three oils (i.e. Conyza dioscoridis L., Artemisia herba-alba Asso and Calendula officinalis L.) elicited high repellent activity in vitro of 94, 84.2 and 82%, respectively. The most active essential oil (C. dioscoridis) was applied in the field at a concentration of 6.5 A mu g/cm(2) and elicited a significant repellent activity against I. ricinus nymphs by 61.1%. The most repellent plants C. dioscoridis, C. officinalis and A. herba-alba yielded essential oils by 0.17, 0.11 and 0.14%, respectively. These oils were further investigated using gas chromatography-mass spectrometry analysis. alpha-Cadinol (10.7%) and hexadecanoic acid (10.5%) were the major components of C. dioscoridis whereas in C. officinalis, alpha-cadinol (21.2%) and carvone (18.2%) were major components. Artemisia herba-alba contained piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%) and hexadecanoic acid (6.9%). Essential oils of these three plants have a potential to be used for personal protection against tick bites.
  •  
5.
  • Shahzad, Danish, et al. (author)
  • Novel C-2 Symmetric Molecules as -Glucosidase and -Amylase Inhibitors : Design, Synthesis, Kinetic Evaluation, Molecular Docking and Pharmacokinetics
  • 2019
  • In: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 24:8
  • Journal article (peer-reviewed)abstract
    • A series of symmetrical salicylaldehyde-bishydrazine azo molecules, 5a-5h, have been synthesized, characterized by H-1-NMR and C-13-NMR, and evaluated for their in vitro -glucosidase and -amylase inhibitory activities. All the synthesized compounds efficiently inhibited both enzymes. Compound 5g was the most potent derivative in the series, and powerfully inhibited both -glucosidase and -amylase. The IC50 of 5g against -glucosidase was 0.35917 +/- 0.0189 mu M (standard acarbose IC50 = 6.109 +/- 0.329 mu M), and the IC50 value of 5g against -amylase was 0.4379 +/- 0.0423 mu M (standard acarbose IC50 = 33.178 +/- 2.392 mu M). The Lineweaver-Burk plot indicated that compound 5g is a competitive inhibitor of -glucosidase. The binding interactions of the most active analogues were confirmed through molecular docking studies. Docking studies showed that 5g interacts with the residues Trp690, Asp548, Arg425, and Glu426, which form hydrogen bonds to 5g with distances of 2.05, 2.20, 2.10 and 2.18 angstrom, respectively. All compounds showed high mutagenic and tumorigenic behaviors, and only 5e showed irritant properties. In addition, all the derivatives showed good antioxidant activities. The pharmacokinetic evaluation also revealed promising results
  •  
6.
  • Amir, Mohd., et al. (author)
  • Investigating architecture and structure-function relationships in cold shock DNA-binding domain family using structural genomics-based approach
  • 2019
  • In: International Journal of Biological Macromolecules. - : ELSEVIER SCIENCE BV. - 0141-8130 .- 1879-0003. ; 133, s. 484-494
  • Journal article (peer-reviewed)abstract
    • Oligonucleotide/oligosaccharide-binding fold (OB-fold) plays a major role in the regulation of central dogma of life via binding though DNA and RNA. The OB-fold domains are diverse in nature and present in large number of proteins with verities of molecular functions. Here, we have investigated the distribution of sequence, structure and repeats of cold shock DNA-binding proteins (CSDB), a member of OB-fold, in all three kingdoms to establish functional relationships. The CSDB is consists of 30 domains with a major contribution of S1 (>110,601 sequences), S12 (>23,760 sequences), S17 (>14,833 sequences) and S28e (>1615 sequence) domains. These domains are largely found in bacteria (70-90%). The number of S1 domain repeats in eukaryota varies from 1 to 15 and are well-correlated with the protein size. The molecular function analysis suggests that a large number of repeats in the S1 domain are involved in diverse molecular functions in bacteria and eukaryotes. In-depth structure analysis of Si, S12, S17 and S28e domain-containing proteins of the OB-fold family provides a reasonable basis to understand the relationship of size and number of repeats with the corresponding molecular functions.
  •  
7.
  • Aneja, Babita, et al. (author)
  • Design and development of Isatin-triazole hydrazones as potential inhibitors of microtubule affinity-regulating kinase 4 for the therapeutic management of cell proliferation and metastasis
  • 2019
  • In: European Journal of Medicinal Chemistry. - : Elsevier BV. - 0223-5234 .- 1768-3254. ; 163, s. 840-852
  • Journal article (peer-reviewed)abstract
    • Microtubule affinity-regulating kinase 4 (MARK4) is a potential drug target as the same is found to be over expressed in several types of cancers. In search of effective MARK4 inhibitors, we have synthesized and characterized Isatin-triazole hydrazones (9a-i) and evaluated their inhibitory potential. Of all the compounds, 9g showed better binding affinity and enzyme inhibition potential in sub micromolar range. Human serum albumin (HSA) binding assay suggested an easy transportation of 9g in blood stream due to its binding affinity. In vitro anticancer studies performed on MCF-7, MDA-MB-435s and HepG2 cells using 9g showed inhibition of cell proliferation and cell migration. Further, 9g induces apoptosis in these cancerous cells, with IC50 values of 6.22, 9.94 and 8.14 mu M, respectively. Putatively, 9g seems to cause oxidative stress resulting in apoptosis. Functional assay of 9g with a panel of 26 kinases showed MARK4 specific profile. In conclusion, 9g seems to possess an effective inhibitory potential towards MARK4 adding an additional repertoire to anticancer therapeutics.
  •  
8.
  • Benchoula, Khaled, et al. (author)
  • Optimization of Hyperglycemic Induction in Zebrafish and Evaluation of Its Blood Glucose Level and Metabolite Fingerprint Treated with Psychotria malayana Jack Leaf Extract
  • 2019
  • In: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 24:8
  • Journal article (peer-reviewed)abstract
    • A standard protocol to develop type 1 diabetes in zebrafish is still uncertain due to unpredictable factors. In this study, an optimized protocol was developed and used to evaluate the anti-diabetic activity of Psychotria malayana leaf. The aims of this study were to develop a type 1 diabetic adult zebrafish model and to evaluate the anti-diabetic activity of the plant extract on the developed model. The ability of streptozotocin and alloxan at a different dose to elevate the blood glucose levels in zebrafish was evaluated. While the anti-diabetic activity of P. malayana aqueous extract was evaluated through analysis of blood glucose and LC-MS analysis fingerprinting. The results indicated that a single intraperitoneal injection of 300 mg/kg alloxan was the optimal dose to elevate the fasting blood glucose in zebrafish. Furthermore, the plant extract at 1, 2, and 3 g/kg significantly reduced blood glucose levels in the diabetic zebrafish. In addition, LC-MS-based fingerprinting indicated that 3 g/kg plant extract more effective than other doses. Phytosterols, sugar alcohols, sugar acid, free fatty acids, cyclitols, phenolics, and alkaloid were detected in the extract using GC-MS. In conclusion, P. malayana leaf aqueous extract showed anti-diabetic activity on the developed type 1 diabetic zebrafish model.
  •  
9.
  • El-Garawani, Islam M., et al. (author)
  • In Vitro Induction of Apoptosis in Isolated Acute Myeloid Leukemia Cells : The Role of Anastatica hierochuntica Methanolic Extract
  • 2022
  • In: Metabolites. - : MDPI AG. - 2218-1989 .- 2218-1989. ; 12:9
  • Journal article (peer-reviewed)abstract
    • Anastatica hierochuntica L. (Cruciferae) has been known in Egyptian folk medicine as a remedy for gastrointestinal disorders, diabetes and heart diseases. Despite the wide usage, A. hierochuntica research provides insufficient data to support its traditional practice. The cytotoxicity of A. hierochuntica methanolic extract was investigated on acute myeloid leukemia blasts (AML) and normal human peripheral leucocytes (NHPL). The phytochemical identification of bioactive compounds using 1H-NMR and LC-ESI-MS was also performed. A. hierochuntica extract caused non-significant cytotoxicity on NHPL, while the cytotoxicity on AML was significant (IC50: 0.38 ± 0.02 μg/mL). The negative expression of p53, upregulation of Caspase-3 and increase in the BAX/BCL-2 ratio were reported at the protein and mRNA levels. The results suggest that A. hierochuntica extract induced AML cell death via the p53-independent mitochondrial intrinsic pathway and further attention should be paid to this plant as a promising natural anticancer agent.
  •  
10.
  • Hussain, Afzal, et al. (author)
  • Biogenesis of ZnO nanoparticles using Pandanus odorifer leaf extract : anticancer and antimicrobial activities
  • 2019
  • In: RSC Advances. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 9:27, s. 15357-15369
  • Journal article (peer-reviewed)abstract
    • The continuously increasing incidence rates of cancer and infectious diseases are open threats to the sustainable survival of animals and humans. In the last two decades, the demands of nanomaterials as modern therapeutic agents have increased. In this study, biogenic zinc oxide nanoparticles (ZnO NPs) were developed from aqueous Pandanus odorifer leaf extract (POLE) and characterized using modern methods and tools, such as electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy and UV-vis spectroscopy, which indicated the formation of very pure, spherical NPs approximately 90 nm in size. The anticancer activity of the ZnO NPs was evaluated by MTT and neutral red uptake (NRU) assays in MCF-7, HepG2 and A-549 cells at different doses (1, 2, 5, 10, 25, 50, 100 g ml(-1)). Moreover, the morphology of the treated cancer cells was examined by phase contrast microscopy. The results suggest that the synthesized ZnO NPs inhibited the growth of the cells when applied a concentration from 50-100 g ml(-1). Moreover, the biogenic ZnO NPs were analysed as an antimicrobial agent against pathogenic bacteria. The highest antibacterial activity was observed against Gram-positive Bacillus subtilis (26 nm) and Gram-negative Escherichia coli (24 mm) at 50 g per well. Complete bacterial growth (100%) vanished 100% upon treatment with ZnO NPs at 85 g ml(-1). Overall, POLE mediated derived biogenic ZnO NPs could serve as a significant anticancer and antimicrobial agent and be used in the development of novel drugs and skin care products.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view