SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alamo S) "

Sökning: WFRF:(Alamo S)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Larsen, Filip J, 1977-, et al. (författare)
  • Mitochondrial oxygen affinity increases after sprint interval training and is related to the improvement in peak oxygen uptake.
  • 2020
  • Ingår i: Acta Physiologica. - : John Wiley & Sons. - 1748-1708 .- 1748-1716. ; 229:3
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: The body responds to exercise training by profound adaptations throughout the cardiorespiratory and muscular systems, which may result in improvements in maximal oxygen consumption (VO2 peak) and mitochondrial capacity. By convenience, mitochondrial respiration is often measured at supra-physiological oxygen levels, an approach that ignores any potential regulatory role of mitochondrial affinity for oxygen (p50mito ) at physiological oxygen levels.METHODS: In this study, we examined the p50mito of mitochondria isolated from the Vastus lateralis and Triceps brachii in 12 healthy volunteers before and after a training intervention with 7 sessions of sprint interval training using both leg cycling and arm cranking. The changes in p50mito were compared to changes in whole-body VO2 peak.RESULTS: We here show that p50mito is similar in isolated mitochondria from the Vastus (40 ± 3.8 Pa) compared to Triceps (39 ± 3.3) but decreases (mitochondrial oxygen affinity increases) after 7 sessions of sprint interval training (to 26 ± 2.2 Pa in Vastus and 22 ± 2.7 Pa in Triceps, both p<0.01). The change in VO2 peak modeled from changes in p50mito was correlated to actual measured changes in VO2 peak (R2 =0.41, p=0.002).CONCLUSION: Together with mitochondrial respiratory capacity, p50mito is a critical factor when measuring mitochondrial function, it can decrease with sprint interval training and should be considered in the integrative analysis of the oxygen cascade from lung to mitochondria.
  •  
7.
  • Martin-Rincon, M., et al. (författare)
  • Exercise mitigates the loss of muscle mass by attenuating the activation of autophagy during severe energy deficit
  • 2019
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The loss of skeletal muscle mass with energy deficit is thought to be due to protein breakdown by the autophagy-lysosome and the ubiquitin-proteasome systems. We studied the main signaling pathways through which exercise can attenuate the loss of muscle mass during severe energy deficit (5500 kcal/day). Overweight men followed four days of caloric restriction (3.2 kcal/kg body weight day) and prolonged exercise (45 min of one-arm cranking and 8 h walking/day), and three days of control diet and restricted exercise, with an intra-subject design including biopsies from muscles submitted to distinct exercise volumes. Gene expression and signaling data indicate that the main catabolic pathway activated during severe energy deficit in skeletal muscle is the autophagy-lysosome pathway, without apparent activation of the ubiquitin-proteasome pathway. Markers of autophagy induction and flux were reduced by exercise primarily in the muscle submitted to an exceptional exercise volume. Changes in signaling are associated with those in circulating cortisol, testosterone, cortisol/testosterone ratio, insulin, BCAA, and leucine. We conclude that exercise mitigates the loss of muscle mass by attenuating autophagy activation, blunting the phosphorylation of AMPK/ULK1/Beclin1, and leading to p62/SQSTM1 accumulation. This includes the possibility of inhibiting autophagy as a mechanism to counteract muscle loss in humans under severe energy deficit. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy