SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alatalo Juha) "

Sökning: WFRF:(Alatalo Juha)

  • Resultat 1-10 av 57
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lembrechts, Jonas J., et al. (författare)
  • Global maps of soil temperature
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
2.
  • Lembrechts, Jonas J., et al. (författare)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Tidskriftsartikel (refereegranskat)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
3.
  • Alatalo, Juha, 1966-, et al. (författare)
  • Effect of Altitude on the Sex-Ratio in Populations of Silene Acaulis (Caryophyllaceae) : Effect of Altitude on the Sex-Ratio in Populations of Silene Acaulis (Caryophyllaceae)
  • 1995
  • Ingår i: Nordic Journal of Botany. - 0107-055X .- 1756-1051. ; 15:3, s. 251-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicted increase of female frequencies in gynodioecious Silene acaulis was tested along an altitude gradient in northern Sweden. Average female frequencies for the four sites increased with altitude from 42% to 59% within a short geographical distance. This follows the outcrossing hypothesis, that female frequencies should be positively correlated with selfing rates of hermaphrodites in populations. More adverse environmental conditions should favour gynodioecy in areas where reproduction to a greater part relies on vegetative reproduction or selfing. Further, a significant difference in corolla width was found between females and the larger hermaphrodites, but not between sites. Cushion size and the number of flowers per cushion decreased with altitude.
  •  
4.
  • Alatalo, Juha, 1966- (författare)
  • Gender lability in trioecious Silene acaulis (Caryophyllaceae)
  • 1997
  • Ingår i: Nordic Journal of Botany. - : Wiley. - 0107-055X .- 1756-1051. ; 17:2, s. 181-183
  • Tidskriftsartikel (refereegranskat)abstract
    • Gender expression of individual cushions of Silene acaulis was shown to vary between years. Fifteen of thirty-nine (= 38%) cushions monitored changed gender expression between 1993 and 1995. Cushions dominated by female flowers were shown to be more stable in gender expression than cushions dominated by male or hermaphrodite flowers.
  •  
5.
  • Alatalo, Juha M., et al. (författare)
  • Bryophyte cover and richness decline after 18 years of experimental warming in Alpine Sweden
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • 1. Bryophytes in the Arctic and Alpine regions are important in terms of biodiversity, cover and biomass. However, climate change and widespread shrubification of alpine and arctic tundra is predicted to increase in the future, with potentially large impacts on bryophyte communities.2. We studies the impact of 18 years of experimental warming with open top chambers (OTCs) on bryophyte cover, richness and diversity in an alpine mesic meadow and a heath plant community in Northern Sweden. In addition we investigated the relationship between deciduous shrubs and bryophytes.3. Cover and richness of bryophytes both declined due to long-term warming, while diversity did not show any significant responses. After 18 years, bryophyte cover had decreased by 71% and 26 in the heath and meadow, while richness declined by 39% and 26%, respectively.4. Synthesis. Decline in total bryophyte cover in both communities in response to long-term warming was driven by a general decline in many species, with only two individual species showing significant declines. Although most of the species included in the individual analyses did not show any detectable changes, the cumulative change in all species was significant. In addition, species loss was slower than the general decline in bryophyte abundance. As hypothesized, we found significant negative relationship between deciduous shrub cover and bryophyte cover, but not bryophyte richness, in both plant communities. This is likely due to a more delayed decline in species richness compared to abundance, similar to what was observed in response to long-term warming.
  •  
6.
  • Alatalo, Juha M., et al. (författare)
  • Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra
  • 2014
  • Ingår i: Alpine Botany. - : Springer Science and Business Media LLC. - 1664-2201 .- 1664-221X. ; 124:2, s. 81-91
  • Tidskriftsartikel (refereegranskat)abstract
    • We experimentally imposed three different kinds of warming scenarios over 3 years on an alpine meadow community to identify the differential effects of climate warming and extreme climatic events on the abundance and biomass of bryophytes and lichens. Treatments consisted of (a) a constant level of warming with open top chambers (an average temperature increase of 1.87 A degrees C), (b) a yearly stepwise increase of warming (average temperature increases of 1.0; 1.87 and 3.54 A degrees C, consecutively), and (c) a pulse warming, i.e., a single first year pulse event of warming (average temperature increase of 3.54 A degrees C only during the first year). To our knowledge, this is the first climate change study that attempts to distinguish between the effects of constant, stepwise and pulse warming on bryophyte and lichen communities. We hypothesised that pulse warming would have a significant short-term effect compared to the other warming treatments, and that stepwise warming would have a significant mid-term effect compared to the other warming treatments. Acrocarpous bryophytes as a group increased in abundance and biomass to the short-term effect of pulse warming. We found no significant effects of mid-term (third-year) stepwise warming. However, one pleurocarpous bryophyte species, Tomentypnum nitens, generally increased in abundance during the warm year 1997 but decreased in control plots and in response to the stepwise warming treatment. Three years of experimental warming (all treatments as a group) did have a significant impact at the community level, yet changes in abundance did not translate into significant changes in the dominance hierarchies at the functional level (for acrocarpous bryophytes, pleurocarpous bryophytes, Sphagnum or lichens), or in significant changes in other bryophyte or lichen species. The results suggest that bryophytes and lichens, both at the functional group and species level, to a large extent are resistant to the different climate change warming simulations that were applied.
  •  
7.
  • Alatalo, Juha M, et al. (författare)
  • Collembola at three alpine subarctic sites resistant to twenty years of experimental warming
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examined the effects of micro-scale, site and 19 and 21 years of experimental warming on Collembola in three contrasting alpine subarctic plant communities (poor heath, rich meadow, wet meadow). Unexpectedly, experimental long-term warming had no significant effect on species richness, effective number of species, total abundance or abundance of any Collembola species. There were micro-scale effects on species richness, total abundance, and abundance of 10 of 35 species identified. Site had significant effect on effective number of species, and abundance of six species, with abundance patterns differing between sites. Site and long-term warming gave non-significant trends in species richness.The highest species richness was observed in poor heath, but mean species richness tended to be highest in rich meadow and lowest in wet meadow. Warming showed a tendency for a negative impact on species richness. This long-term warming experiment across three contrasting sites revealed that Collembola is capable of high resistance to climate change. We demonstrated that micro-scale and site effects are the main controlling factors for Collembola abundance in high alpine subarctic environments. Thus local heterogeneity is likely important for soil fauna composition and may play a crucial role in buffering Collembola against future climate change.
  •  
8.
  • Alatalo, Juha M., et al. (författare)
  • Dominance hierarchies, diversity and species richness of vascular plants in an alpine meadow: Contrasting short and medium termresponses to simulated global change
  • 2014
  • Ingår i: PeerJ. - : PeerJ Inc.. - 2167-8359. ; 2014:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the impact of simulated global change on a high alpine meadow plant community. Specifically, we examined whether short-term (5 years) responses are good predictors for medium-term (7 years) changes in the system by applying a factorial warming and nutrient manipulation to 20 plots in Latnjajaure, subarctic Sweden. Seven years of experimental warming and nutrient enhancement caused dramatic shifts in dominance hierarchies in response to the nutrient and the combined warming and nutrient enhancement treatments. Dominance hierarchies in the meadow moved from a community being dominated by cushion plants, deciduous, and evergreen shrubs to a community being dominated by grasses, sedges, and forbs. Short-termresponses were shown to be inconsistent in their ability to predict medium-term responses for most functional groups, however, grasses showed a consistent and very substantial increase in response to nutrient addition over the seven years. The non-linear responses over time point out the importance of longer-term studies with repeated measurements to be able to better predict future changes. Forecasted changes to temperature and nutrient availability have implications for trophic interactions, and may ultimately influence the access to and palatability of the forage for grazers. Depending on what anthropogenic change will be most pronounced in the future (increase in nutrient deposits, warming, or a combination of them both), different shifts in community dominance hierarchies may occur. Generally, this study supports the productivity-diversity relationship found across arctic habitats, with community diversity peaking in mid-productivity systems and degrading as nutrient availability increases further. This is likely due the increasing competition in plant-plant interactions and the shifting dominance structure with grasses taking over the experimental plots, suggesting that global change could have high costs to biodiversity in the Arctic. © 2014 Alatalo et al.
  •  
9.
  • Alatalo, Juha M., et al. (författare)
  • Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities
  • 2017
  • Ingår i: Scientific Reports. - : Macmillan Publishers Ltd.. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.
  •  
10.
  • Alatalo, Juha M., et al. (författare)
  • Seven years of experimental warming and nutrient addition causes decline of bryophytes and lichens in alpine meadow and heath communities
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Global change is predicted to have large and rapid impact on polar and alpine regions. Bryophytes and lichens increase their importance in terms of biomass, carbon/nutrient cycling, cover and ecosystem functioning at higher latitudes/altitudes. Here we report from a seven year factorial experiment with nutrient addition and warming on the abundance of bryophytes and lichens in an alpine meadow and heath community. Treatments had significant negative effect on relative change of total abundance bryophytes and lichens, the largest decline to the nutrient addition and the combined nutrient addition and warming treatments, bryophytes decreasing most in the meadow, lichens most in the heath. Nutrient addition, and the combined nutrient addition and warming brought rapid decrease in both bryophytes and lichens, while warming had a delayed negative impact. Of sixteen species that were included the statistical analyses, we found significant negative effects on seven species. We show that impact of simulated global change on bryophytes and lichens differ in in time and magnitude among treatments and plant communities. Our results underscore the importance of longer-term studies to improve the quality of climate change models, as short-term studies are poor predictors of longer-term responses of bryophytes and lichens, similar to what have been shown for vascular plants. Species-specific responses may differ in time, and this will likely cause changes in the dominance structures of bryophytes and lichens over time.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 57
Typ av publikation
tidskriftsartikel (50)
forskningsöversikt (4)
annan publikation (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (54)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Alatalo, Juha M. (36)
Molau, Ulf, 1951 (17)
Alatalo, Juha, 1966- (14)
Jägerbrand, Annika K ... (11)
Björk, Robert G., 19 ... (9)
Jägerbrand, Annika K ... (7)
visa fler...
Molau, Ulf (7)
Michelsen, Anders (7)
Lévesque, Esther (7)
Jägerbrand, Annika, ... (6)
Little, Chelsea J. (6)
Barrio, Isabel C. (6)
Hik, David S. (6)
Soudzilovskaia, Nade ... (6)
Myers-Smith, Isla H. (6)
Rixen, Christian (6)
Molau, U (5)
Totland, O (5)
Björkman, Anne, 1981 (5)
Olofsson, Johan (5)
Speed, James D. M. (5)
Björkman, Mats P., 1 ... (5)
Hofgaard, Annika (5)
Wilmking, Martin (5)
Dolezal, Jiri (5)
Hollister, Robert D. (5)
Prevéy, Janet S. (5)
Cornelissen, J. Hans ... (4)
Forbes, Bruce C. (4)
Grogan, Paul (4)
Oberbauer, Steven F. (4)
Bai, Yang (4)
Schmidt, Niels Marti ... (4)
Klanderud, Kari (4)
Te Beest, Mariska (4)
Boike, Julia (4)
Buchwal, Agata (4)
Hallinger, Martin (4)
Heijmans, Monique M. ... (4)
Høye, Toke T. (4)
Jónsdóttir, Ingibjor ... (4)
Normand, Signe (4)
Street, Lorna E. (4)
Wookey, Philip A. (4)
Bauters, Marijn (4)
Van Meerbeek, Koenra ... (4)
Ninot, Josep M. (4)
Henry, Gregory H.R. (4)
Thomas, Haydn J.D. (4)
Wipf, Sonja (4)
visa färre...
Lärosäte
Uppsala universitet (29)
Högskolan i Gävle (24)
Göteborgs universitet (21)
Jönköping University (20)
VTI - Statens väg- och transportforskningsinstitut (15)
Mälardalens universitet (13)
visa fler...
Umeå universitet (12)
Sveriges Lantbruksuniversitet (10)
Högskolan i Halmstad (5)
Stockholms universitet (4)
Lunds universitet (4)
visa färre...
Språk
Engelska (57)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (50)
Lantbruksvetenskap (4)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy