SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alatalo M.) "

Sökning: WFRF:(Alatalo M.)

  • Resultat 1-10 av 81
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thomas, H. J. D., et al. (författare)
  • Global plant trait relationships extend to the climatic extremes of the tundra biome
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
  •  
2.
  • Thomas, H. J.D., et al. (författare)
  • Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome
  • 2019
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 28:2, s. 78-95
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Aim: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. Location: Tundra biome. Time period: Data collected between 1964 and 2016. Major taxa studied: 295 tundra vascular plant species. Methods: We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. Results: Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. Main conclusions: Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra ecosystem change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insight into ecological prediction and modelling.
  •  
3.
  • Tedersoo, L., et al. (författare)
  • The Global Soil Mycobiome consortium dataset for boosting fungal diversity research
  • 2021
  • Ingår i: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 111, s. 573-588
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are highly important biotic components of terrestrial ecosystems, but we still have a very limited understanding about their diversity and distribution. This data article releases a global soil fungal dataset of the Global Soil Mycobiome consortium (GSMc) to boost further research in fungal diversity, biogeography and macroecology. The dataset comprises 722,682 fungal operational taxonomic units (OTUs) derived from PacBio sequencing of full-length ITS and 18S-V9 variable regions from 3200 plots in 108 countries on all continents. The plots are supplied with geographical and edaphic metadata. The OTUs are taxonomically and functionally assigned to guilds and other functional groups. The entire dataset has been corrected by excluding chimeras, index-switch artefacts and potential contamination. The dataset is more inclusive in terms of geographical breadth and phylogenetic diversity of fungi than previously published data. The GSMc dataset is available over the PlutoF repository.
  •  
4.
  • Rixen, C., et al. (författare)
  • Winters are changing: snow effects on Arctic and alpine tundra ecosystems
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 572-608
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season's start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover's role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.
  •  
5.
  • Criado, M. G., et al. (författare)
  • Plant traits poorly predict winner and loser shrub species in a warming tundra biome
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces. Functional trait data could guide predictions of species responses to environmental change. Here, the authors show that winner and loser shrub species in the warming tundra biome overlap in trait space and may therefore be difficult to predict based on commonly measured traits.
  •  
6.
  • Potapov, Anton M., et al. (författare)
  • Global fine-resolution data on springtail abundance and community structure
  • 2024
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.
  •  
7.
  • Arft, M, et al. (författare)
  • Responses of tundra plants to experimental warming : Meta-analysis of the international tundra experiment
  • 1999
  • Ingår i: Ecological Monographs. - 0012-9615 .- 1557-7015. ; 69:4, s. 491-511
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Tundra Experiment (ITEX) is a collaborative, multisite experiment using a common temperature manipulation to examine variability in species response across climatic and geographic gradients of tundra ecosystems. ITEX was designed specifically to examine variability in arctic and alpine species response to increased temperature. We compiled from one to four years of experimental data from 13 different ITEX sites and used meta-analysis to analyze responses of plant phenology, growth, and reproduction to experimental warming. Results indicate that key phenological events such as leaf bud burst and flowering occurred earlier in warmed plots throughout the study period; however, there was little impact on growth cessation at the end of the season. Quantitative measures of vegetative growth were greatest in warmed plots in the early years of the experiment, whereas reproductive effort and success increased in later years. A shift away from vegetative growth and toward reproductive effort and success in the fourth treatment year suggests a shift from the initial response to a secondary response. The change in vegetative response may be due to depletion of stored plant reserves, whereas the lag in reproductive response may be due to the formation of flower buds one to several seasons prior to flowering. Both vegetative and reproductive responses varied among life-forms; herbaceous forms had stronger and more consistent vegetative growth responses than did woody forms. The greater responsiveness of the herbaceous forms may be attributed to their more flexible morphology and to their relatively greater proportion of stored plant reserves. Finally, warmer, low arctic sites produced the strongest growth responses, but colder sites produced a greater reproductive response. Greater resource investment in vegetative growth may be a conservative strategy in the Low Arctic, where there is more competition for light, nutrients, or water, and there may be little opportunity for successful germination or seedling development. In contrast, in the High Arctic, heavy investment in producing seed under a higher temperature scenario may provide an opportunity for species to colonize patches of unvegetated ground. The observed differential response to warming suggests that the primary forces driving the response vary across climatic zones, functional groups, and through time.
  •  
8.
  • Björkman, Anne, 1981, et al. (författare)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
9.
  • Barrio, Isabel C., et al. (författare)
  • Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome
  • 2017
  • Ingår i: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 40:11, s. 2265-2278
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6-7% over the current levels with a 1 degrees C increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 81
Typ av publikation
tidskriftsartikel (73)
forskningsöversikt (4)
annan publikation (2)
konferensbidrag (2)
Typ av innehåll
refereegranskat (78)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Alatalo, Juha M. (35)
Molau, Ulf, 1951 (26)
Alatalo, J. M. (15)
Jägerbrand, Annika K ... (13)
Björk, Robert G., 19 ... (11)
Alatalo, M. (9)
visa fler...
Jägerbrand, Annika, ... (9)
Björkman, Anne, 1981 (9)
Olofsson, Johan (8)
Jägerbrand, Annika K ... (7)
Björkman, Mats P., 1 ... (7)
Lévesque, Esther (7)
Kokko, K. (6)
Vitos, Levente (6)
Michelsen, Anders (6)
Hik, David S. (6)
Soudzilovskaia, Nade ... (6)
Te Beest, Mariska (6)
Hallinger, Martin (6)
Ropo, M. (5)
Alatalo, Juha, 1966- (5)
Molau, Ulf (5)
Little, Chelsea J. (5)
Speed, James D. M. (5)
Barrio, Isabel C. (5)
Hofgaard, Annika (5)
Bai, Y. (4)
Cooper, E J (4)
Cornelissen, J. Hans ... (4)
Dorrepaal, Ellen (4)
Forbes, Bruce C. (4)
Grogan, Paul (4)
Oberbauer, Steven F. (4)
Bai, Yang (4)
Schmidt, Niels Marti ... (4)
Johansson, Börje (4)
Ohlsson, Claes, 1965 (4)
Cornelissen, J. H. C ... (4)
Punkkinen, M. P. J. (4)
Little, C. J. (4)
Totland, O (4)
LUNDBERG, A (4)
Klanderud, Kari (4)
Levesque, E (4)
Boike, Julia (4)
Buchwal, Agata (4)
Heijmans, Monique M. ... (4)
Jónsdóttir, Ingibjor ... (4)
Normand, Signe (4)
Street, Lorna E. (4)
visa färre...
Lärosäte
Göteborgs universitet (39)
Högskolan i Gävle (29)
Uppsala universitet (28)
Jönköping University (21)
Umeå universitet (15)
VTI - Statens väg- och transportforskningsinstitut (15)
visa fler...
Sveriges Lantbruksuniversitet (13)
Högskolan i Halmstad (9)
Kungliga Tekniska Högskolan (6)
Lunds universitet (6)
Stockholms universitet (5)
Mälardalens universitet (5)
Karolinska Institutet (3)
Luleå tekniska universitet (2)
Chalmers tekniska högskola (2)
Högskolan i Borås (1)
visa färre...
Språk
Engelska (81)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (66)
Lantbruksvetenskap (5)
Teknik (1)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy