SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alexandraki D) "

Sökning: WFRF:(Alexandraki D)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Dujon, B, et al. (författare)
  • The nucleotide sequence of Saccharomyces cerevisiae chromosome XV
  • 1997
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 387:6632, s. 98-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosome XV was one of the last two chromosomes of Saccharomyces cerevisiae to be discovered(1). It is the third-largest yeast chromosome after chromosomes XII and IV, and is very similar in size to chromosome VII. It alone represents 9% of the yeast genome (8% if ribosomal DNA is included). When systematic sequencing of chromosome XV was started, 93 genes or markers were identified, and most of them were mapped(2). However, very little else was known about chromosome XV which, in contrast to shorter chromosomes, had not been the object of comprehensive genetic or molecular analysis. It was therefore decided to start sequencing chromosome XV only in the third phase of the European Yeast Genome Sequencing Programme, after experience was gained on chromosomes III, XI and II (refs 3-5). The sequence of chromosome XV has been determined from a set of partly overlapping cosmid clones derived from a unique yeast strain, and physically mapped at 3.3-kilobase resolution before sequencing. As well as numerous new open reading frames (ORFs) and genes encoding tRNA or small RNA molecules, the sequence of 1,091,283 base pairs confirms the high proportion of orphan genes and reveals a number of ancestral and successive duplications with other yeast chromosomes.
  •  
5.
  •  
6.
  •  
7.
  • Chatzidaki, Maria D., et al. (författare)
  • Microemulsions as Potential Carriers of Nisin : Effect of Composition on Structure and Efficacy
  • 2016
  • Ingår i: Langmuir. - Washington, USA : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 32:35, s. 8988-8998
  • Tidskriftsartikel (refereegranskat)abstract
    • Water-in-oil (W/O) microemulsions based on either refined olive oil (ROO) or sunflower oil (SO), distilled monoglycerides (DMG), and ethanol were used as nisin carriers in order to ensure its effectiveness as a biopreservative. This work presents experimental evidence on the effects of ethanol concentration, hydration, the nature of oil, and the addition of nisin on the nanostructure of the proposed inverse microemulsions as revealed by electrical conductivity measurements, dynamic light scattering (DLS), small angle X-ray scattering (SAXS), and electron paramagnetic resonance (EPR) spectroscopy. Modeling of representative SAXS profiles was applied to gain further insight into the effects of ethanol and solubilized water content on the inverse swollen micelles' size and morphology. With increasing ethanol content, the overall size of the inverse micelles decreased, whereas hydration resulted in an increase in the micellar size due to the penetration of water into the hydrophilic core of the inverse swollen micelles (hydration-induced swelling behavior). The dynamic properties of the surfactant monolayer were also affected by the nature of the used vegetable oil, the ethanol content, and the presence of the bioactive molecule, as evidenced by EPR spin probing experiments. According to simulation on the experimental spectra, two populations of spin probes at different polarities were revealed. The antimicrobial effect of the encapsulated nisin was evaluated using the well diffusion assay (WDA) technique against Lactococccus lactis. It was found that this encapsulated bacteriocin induced an inhibition of the microorganism growth. The effect was more pronounced at higher ethanol concentrations, but no significant difference was observed between the two used vegetable oils (ROO and SO).
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy