SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alffenaar Jan Willem C.) "

Sökning: WFRF:(Alffenaar Jan Willem C.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gafar, Fajri, et al. (författare)
  • Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents : a systematic review and individual patient data meta-analysis
  • 2023
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 61:3
  • Forskningsöversikt (refereegranskat)abstract
    • Background Suboptimal exposure to antituberculosis (anti-TB) drugs has been associated with unfavourable treatment outcomes. We aimed to investigate estimates and determinants of first-line anti-TB drug pharmacokinetics in children and adolescents at a global level.Methods We systematically searched MEDLINE, Embase and Web of Science (1990–2021) for pharmacokinetic studies of first-line anti-TB drugs in children and adolescents. Individual patient data were obtained from authors of eligible studies. Summary estimates of total/extrapolated area under the plasma concentration–time curve from 0 to 24 h post-dose (AUC0–24) and peak plasma concentration (Cmax) were assessed with random-effects models, normalised with current World Health Organization-recommended paediatric doses. Determinants of AUC0–24 and Cmax were assessed with linear mixed-effects models.Results Of 55 eligible studies, individual patient data were available for 39 (71%), including 1628 participants from 12 countries. Geometric means of steady-state AUC0–24 were summarised for isoniazid (18.7 (95% CI 15.5–22.6) h·mg·L−1), rifampicin (34.4 (95% CI 29.4–40.3) h·mg·L−1), pyrazinamide (375.0 (95% CI 339.9–413.7) h·mg·L−1) and ethambutol (8.0 (95% CI 6.4–10.0) h·mg·L−1). Our multivariate models indicated that younger age (especially <2 years) and HIV-positive status were associated with lower AUC0–24 for all first-line anti-TB drugs, while severe malnutrition was associated with lower AUC0–24 for isoniazid and pyrazinamide. N-acetyltransferase 2 rapid acetylators had lower isoniazid AUC0–24 and slow acetylators had higher isoniazid AUC0–24 than intermediate acetylators. Determinants of Cmax were generally similar to those for AUC0–24.Conclusions This study provides the most comprehensive estimates of plasma exposures to first-line anti-TB drugs in children and adolescents. Key determinants of drug exposures were identified. These may be relevant for population-specific dose adjustment or individualised therapeutic drug monitoring.
  •  
2.
  • Alffenaar, Jan-Willem C., et al. (författare)
  • Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs : An evaluation of in vitro, in vivo methodologies and human studies
  • 2022
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media S.A.. - 1663-9812. ; 13
  • Forskningsöversikt (refereegranskat)abstract
    • There has been an increased interest in pharmacokinetics and pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better understanding of the relationship between drug exposure, antimicrobial kill and acquired drug resistance is essential not only to optimize current treatment regimens but also to design appropriately dosed regimens with new anti-tuberculosis drugs. Although the interest in PKPD has resulted in an increased number of studies, the actual bench-to-bedside translation is somewhat limited. One of the reasons could be differences in methodologies and outcome assessments that makes it difficult to compare the studies. In this paper we summarize most relevant in vitro, in vivo, in silico and human PKPD studies performed to optimize the drug dose and regimens for treatment of tuberculosis. The in vitro assessment focuses on MIC determination, static time-kill kinetics, and dynamic hollow fibre infection models to investigate acquisition of resistance and killing of Mycobacterium tuberculosis populations in various metabolic states. The in vivo assessment focuses on the various animal models, routes of infection, PK at the site of infection, PD read-outs, biomarkers and differences in treatment outcome evaluation (relapse and death). For human PKPD we focus on early bactericidal activity studies and inclusion of PK and therapeutic drug monitoring in clinical trials. Modelling and simulation approaches that are used to evaluate and link the different data types will be discussed. We also describe the concept of different studies, study design, importance of uniform reporting including microbiological and clinical outcome assessments, and modelling approaches. We aim to encourage researchers to consider methods of assessing and reporting PKPD of anti-tuberculosis drugs when designing studies. This will improve appropriate comparison between studies and accelerate the progress in the field.
  •  
3.
  • Chen, Ricky Hao, et al. (författare)
  • Is there a need to optimise pyrazinamide doses in patients with tuberculosis? A systematic review
  • 2023
  • Ingår i: International Journal of Antimicrobial Agents. - : ELSEVIER. - 0924-8579 .- 1872-7913. ; 62:3
  • Forskningsöversikt (refereegranskat)abstract
    • Pyrazinamide (PZA) is a first-line antituberculosis drug with potent sterilising activity. Variability in drug exposure may translate into suboptimal treatment responses. This systematic review, conducted according to PRISMA guidelines, aimed to evaluate the concentration-effect relationship. In vitro/in vivo studies had to contain information on the infection model, PZA dose and concentration, and microbiological outcome. Human studies had to present information on PZA dose, measures of drug exposure and maximum concentration, and microbiological response parameter or overall treatment outcome. A total of 34 studies were assessed, including in vitro (n = 2), in vivo (n = 3) and clinical studies (n = 29). Intracellular and extracellular models demonstrated a direct correlation between PZA dose of 15-50 mg/kg/day and reduction in bacterial count between 0.50-27.7 log(10) CFU/mL. Consistent with this, higher PZA doses (>150 mg/kg) were associated with a greater reduction in bacterial burden in BALB/c mice models. Human pharmacokinetic studies displayed a linear positive correlation between PZA dose (i.e. 21.4-35.7 mg/kg/day) and drug exposure (AUC range 220.6-514.5 mg center dot h/L). Additionally, human studies confirmed a dose-effect relationship, with an increased 2-month sputum culture conversion rate at AUC/MIC targets of 8.4-11.3 with higher exposure/susceptibility ratios leading to greater efficacy. A 5-fold variability in AUC was observed at PZA dose of 25 mg/kg. A direct concentration-effect relationship and increased treatment efficacy with higher PZA exposure to susceptibility ratios was observed. Taking into account variability in drug exposure and treatment response, further studies on dose optimisation are justified.
  •  
4.
  • Deshpande, Devyani, et al. (författare)
  • D-Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal
  • 2018
  • Ingår i: Clinical Infectious Diseases. - : OXFORD UNIV PRESS INC. - 1058-4838 .- 1537-6591. ; 67, s. S308-S316
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. D-cycloserine is used to treat multidrug-resistant tuberculosis. Its efficacy, contribution in combination therapy, and best clinical dose are unclear, also data on the D-cycloserine minimum inhibitory concentration (MIC) distributions is scant. Methods. We performed a systematic search to identify pharmacokinetic and pharmacodynamic studies performed with D-cycloserine. We then performed a combined exposure-effect and dose fractionation study of D-cycloserine in the hollow fiber system model of tuberculosis (HFS-TB). In parallel, we identified D-cycloserine MICs in 415 clinical Mycobacterium tuberculosis (Mtb) isolates from patients. We utilized these results, including intracavitary concentrations, to identify the clinical dose that would be able to achieve or exceed target exposures in 10 000 patients using Monte Carlo experiments (MCEs). Results. There were no published D-cycloserine pharmacokinetics/pharmacodynamics studies identified. Therefore, we performed new HFS-TB experiments. Cyloserine killed 6.3 log(10) colony-forming units (CFU)/mL extracellular bacilli over 28 days. Efficacy was driven by the percentage of time concentration persisted above MIC (% T-MIC), with 1.0 log(10) CFU/mL kill achieved by % T-MIC = 30% (target exposure). The tentative epidemiological cutoff value with the Sensititre MYCOTB assay was 64 mg/L. In MCEs, 750 mg twice daily achieved target exposure in lung cavities of 92% of patients whereas 500 mg twice daily achieved target exposure in 85% of patients with meningitis. The proposed MCE-derived clinical susceptibility breakpoint at the proposed doses was 64 mg/L. Conclusions. Cycloserine is cidal against Mtb. The susceptibility breakpoint is 64 mg/L. However, the doses likely to achieve the cidality in patients are high, and could be neurotoxic.
  •  
5.
  • Ekqvist, David, et al. (författare)
  • Safety and pharmacokinetics-pharmacodynamics of a shorter tuberculosis treatment with high-dose pyrazinamide and rifampicin : a study protocol of a phase II clinical trial (HighShort-RP)
  • 2022
  • Ingår i: BMJ Open. - : BMJ Publishing Group Ltd. - 2044-6055. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Increased dosing of rifampicin and pyrazinamide seems a viable strategy to shorten treatment and prevent relapse of drug-susceptible tuberculosis (TB), but safety and efficacy remains to be confirmed. This clinical trial aims to explore safety and pharmacokinetics-pharmacodynamics of a high-dose pyrazinamide-rifampicin regimen.Methods and analysis: Adult patients with pulmonary TB admitted to six hospitals in Sweden and subjected to receive first-line treatment are included. Patients are randomised (1:3) to either 6-month standardised TB treatment or a 4-month regimen based on high-dose pyrazinamide (40 mg/kg) and rifampicin (35 mg/kg) along with standard doses of isoniazid and ethambutol. Plasma samples for measurement of drug exposure determined by liquid chromatography tandem-mass spectrometry are obtained at 0, 1, 2, 4, 6, 8, 12 and 24 hours, at day 1 and 14. Maximal drug concentration (C-max) and area under the concentration-time curve (AUC(0-24h)) are estimated by non-compartmental analysis. Conditions for early model-informed precision dosing of high-dose pyrazinamide-rifampicin are pharmacometrically explored. Adverse drug effects are monitored throughout the study and graded according to Common Terminology Criteria for Adverse Events V.5.0. Early bactericidal activity is assessed by time to positivity in BACTEC MGIT 960 of induced sputum collected at day 0, 5, 8, 15 and week 8. Minimum inhibitory concentrations of first-line drugs are determined using broth microdilution. Disease severity is assessed with X-ray grading and a validated clinical scoring tool (TBscore II). Clinical outcome is registered according to WHO definitions (2020) in addition to occurrence of relapse after end of treatment. Primary endpoint is pyrazinamide AUC(0-24h) and main secondary endpoint is safety.Ethics and dissemination: The study is approved by the Swedish Ethical Review Authority and the Swedish Medical Products Agency. Informed written consent is collected before study enrolment. The study results will be submitted to a peer-reviewed journal.
  •  
6.
  • Sturkenboom, Marieke G. G., et al. (författare)
  • Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs
  • 2021
  • Ingår i: Clinical Pharmacokinetics. - : ADIS INT LTD. - 0312-5963 .- 1179-1926. ; 60:6, s. 685-710
  • Forskningsöversikt (refereegranskat)abstract
    • Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
  •  
7.
  • van Beek, Stijn W., et al. (författare)
  • A Model-Informed Method for the Purpose of Precision Dosing of Isoniazid in Pulmonary Tuberculosis
  • 2021
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 60:7, s. 943-953
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and ObjectiveThis study aimed to develop and evaluate a population pharmacokinetic model and limited sampling strategy for isoniazid to be used in model-based therapeutic drug monitoring.MethodsA population pharmacokinetic model was developed based on isoniazid and acetyl-isoniazid pharmacokinetic data from seven studies with in total 466 patients from three continents. Three limited sampling strategies were tested based on the available sampling times in the dataset and practical considerations. The tested limited sampling strategies sampled at 2, 4, and 6 h, 2 and 4 h, and 2 h after dosing. The model-predicted area under the concentration–time curve from 0 to 24 h (AUC24) and the peak concentration from the limited sampling strategies were compared to predictions using the full pharmacokinetic curve. Bias and precision were assessed using the mean error (ME) and the root mean square error (RMSE), both expressed as a percentage of the mean model-predicted AUC24 or peak concentration on the full pharmacokinetic curve.ResultsPerformance of the developed model was acceptable and the uncertainty in parameter estimations was generally low (the highest relative standard error was 39% coefficient of variation). The limited sampling strategy with sampling at 2 and 4 h was determined as most suitable with an ME of 1.1% and RMSE of 23.4% for AUC24 prediction, and ME of 2.7% and RMSE of 23.8% for peak concentration prediction. For the performance of this strategy, it is important that data on both isoniazid and acetyl-isoniazid are used. If only data on isoniazid are available, a limited sampling strategy using 2, 4, and 6 h can be employed with an ME of 1.7% and RMSE of 20.9% for AUC24 prediction, and ME of 1.2% and RMSE of 23.8% for peak concentration prediction.ConclusionsA model-based therapeutic drug monitoring strategy for personalized dosing of isoniazid using sampling at 2 and 4 h after dosing was successfully developed. Prospective evaluation of this strategy will show how it performs in a clinical therapeutic drug monitoring setting.
  •  
8.
  • Wicha, Sebastian G., et al. (författare)
  • From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotic
  • 2021
  • Ingår i: Clinical Pharmacology and Therapeutics. - : John Wiley & Sons. - 0009-9236 .- 1532-6535. ; 109:4, s. 928-941
  • Forskningsöversikt (refereegranskat)abstract
    • Therapeutic drug monitoring (TDM) and model-informed precision dosing (MIPD) have evolved as important tools to inform rational dosing of antibiotics in individual patients with infections. In particular, critically ill patients display altered, highly variable pharmacokinetics and often suffer from infections caused by less susceptible bacteria. Consequently, TDM has been used to individualize dosing in this patient group for many years. More recently, there has been increasing research on the use of MIPD software to streamline the TDM process, which can increase the flexibility and precision of dose individualization but also requires adequate model validation and re-evaluation of existing workflows. In parallel, new minimally invasive and noninvasive technologies such as microneedle-based sensors are being developed, which-together with MIPD software-have the potential to revolutionize how patients are dosed with antibiotics. Nonetheless, carefully designed clinical trials to evaluate the benefit of TDM and MIPD approaches are still sparse, but are critically needed to justify the implementation of TDM and MIPD in clinical practice. The present review summarizes the clinical pharmacology of antibiotics, conventional TDM and MIPD approaches, and evidence of the value of TDM/MIPD for aminoglycosides, beta-lactams, glycopeptides, and linezolid, for which precision dosing approaches have been recommended.
  •  
9.
  • Zheng, Xubin, et al. (författare)
  • Development and validation of a simple LC-MS/MS method for simultaneous determination of moxifloxacin, levofloxacin, prothionamide, pyrazinamide and ethambutol in human plasma
  • 2020
  • Ingår i: Journal of chromatography. B. - : ELSEVIER. - 1570-0232 .- 1873-376X. ; 1158
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment of multidrug-resistant tuberculosis (MDR-TB) is challenging due to high treatment failure rate and adverse drug events. This study aimed to develop and validate a simple LC-MS/MS method for simultaneous measurement of five TB drugs in human plasma and to facilitate therapeutic drug monitoring (TDM) in MDR-TB treatment to increase efficacy and reduce toxicity. Moxifloxacin, levofloxacin, prothionamide, pyrazinamide and ethambutol were prepared in blank plasma from healthy volunteers and extracted using protein precipitation reagent containing trichloroacetic acid. Separation was achieved on an Atlantis T3 column with gradient of 0.1% formic acid in water and acetonitrile. Drug concentrations were determined by dynamic multiple reaction monitoring in positive ion mode on a LC-MS/MS system. The method was validated according to the United States Food and Drug Administration (FDA) guideline for bioanalytical method validation. The calibration curves for moxifloxacin, levofloxacin, prothionamide, pyrazinamide and ethambutol were linear, with the correlation coefficient values above 0.993, over a range of 0.1-5, 0.4-40, 0.2-10, 2-100 and 0.2-10 mg/L, respectively. Validation showed the method to be accurate and precise with bias from 6.5% to 18.3% for lower limit of quantification and -5.8% to 14.6% for LOW, medium (MED) and HIGH drug levels, and with coefficient of variations within 11.4% for all levels. Regarding dilution integrity, the bias was within 7.2% and the coefficient of variation was within 14.9%. Matrix effect (95.7%-112.5%) and recovery (91.4%-109.7%) for all drugs could be well compensated by their isotope-labelled internal standards. A benchtop stability test showed that the degradation of prothionamide was over 15% after placement at room temperature for 72 h. Clinical samples (n = 224) from a cohort study were analyzed and all concentrations were within the analytical range. The signal of prothionamide was suppressed in samples with hemolysis which was solved by sample dilution. As the method is robust and sample preparation is simple, it can easily be implemented to facilitate TDM in programmatic MDR-TB treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
forskningsöversikt (5)
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (9)
Författare/redaktör
Alffenaar, Jan-Wille ... (8)
Schön, Thomas (3)
Sturkenboom, Marieke ... (3)
Denti, Paolo (2)
Svensson, Elin M., 1 ... (2)
Simonsson, Ulrika S. ... (2)
visa fler...
Wicha, Sebastian G. (2)
Paues, Jakob (2)
Kuhlin, Johanna (2)
Mpagama, Stellah G. (2)
Fredrikson, Mats (1)
Svensson, Elin, 1985 ... (1)
Diacon, Andreas H. (1)
Nielsen, Elisabet I. ... (1)
Donald, Peter R. (1)
Dooley, Kelly E. (1)
Swaminathan, Soumya (1)
de Steenwinkel, Jurr ... (1)
Srivastava, Shashika ... (1)
Ekqvist, David (1)
Jonsson Nordvall, Mi ... (1)
Bruchfeld, Judith (1)
Friberg, Lena (1)
Sönnerbrandt, Martin ... (1)
Xu, Biao (1)
Carlsson, Björn (1)
Garcia-Prats, Anthon ... (1)
Thee, Stephanie (1)
Bekker, Adrie (1)
Schaaf, H. Simon (1)
McIlleron, Helen (1)
Hesseling, Anneke C. (1)
Ter Heine, Rob (1)
Alffenaar, Jan-Wille ... (1)
Chen, Ricky Hao (1)
Michael, Toni (1)
Stocker, Sophie (1)
Sandstedt, Mårten (1)
Engidawork, Ephrem (1)
Wasmann, Roeland E. (1)
McIlleron, Helen M. (1)
Deshpande, Devyani (1)
Koser, Claudio U. (1)
Dheda, Keertan (1)
Chapagain, Moti L. (1)
Simbar, Noviana (1)
Lee, Pooi S. (1)
Koeuth, Thearith (1)
Banu, Sayera (1)
Foongladda, Suporn (1)
visa färre...
Lärosäte
Uppsala universitet (6)
Linköpings universitet (4)
Karolinska Institutet (2)
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy