SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ali Kosar Mohammad) "

Sökning: WFRF:(Ali Kosar Mohammad)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amin, Kawa, et al. (författare)
  • Evidence for eosinophil and IL-17 mediated inflammation in allergic rhinitis
  • 2020
  • Ingår i: Clinical and Molecular Allergy. - : Springer Science and Business Media LLC. - 1476-7961. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The aim was to determine the level of inflammatory cytokines, eosinophil cationic protein and IgE in allergic rhinitis (AR) patients.Subjects and methods: Blood samples were taken from 88 AR patients and 88 healthy controls (HC). Each sample was analysed for eosinophil counts by flow cytometry, IgE by ECLIA, ECP, IL-17, and IL-33 by using ELISA test.Results: There was no significant difference between AR patients and the control group in age and gender. Levels of eosinophils, IgE, ECP, IL-17, IL-33 and the total symptom scores were significantly higher in AR patients than the HC (P = 0.0001). Serum ECP correlated with IL-17 (P = 0.041, r = 0.42), IL-33 (P = 0.0001, r = 080), and IgE levels (P = 0.017, r = 0.45) in the R patients. There was no correlation between IL-17 and IL-33. There was a correlation between symptom scores and eosinophils (P = 0.026, r = 0.52), and IgE (P = 0.001, r = 0.60) in the patients. No correlation was observed between symptom scores and ECP, IL-17, and IL-33 in the AR patient.Conclusions: Patients with AR have significant higher serum levels of ECP, IL-17, and IL-33 than healthy controls. This indicates that these markers could be used to in order to diagnose AR and to monitor disease. Inhibitory molecules to IL-17 and IL-33 may be considered as novel treatment strategies.
  •  
2.
  • Jafarpour, Mohammad, et al. (författare)
  • An ecologically friendly process for graphene exfoliation based on the "hydrodynamic cavitation on a chip" concept
  • 2021
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 11:29, s. 17965-17975
  • Tidskriftsartikel (refereegranskat)abstract
    • Tremendous research efforts have recently focused on the synthesis of graphene from graphitic materials, while environmental issues, scalability, and cost are some of the major challenges to be surmounted. Liquid phase exfoliation (LPE) of graphene is one of the principal methods for this synthesis. Nevertheless, sufficient information about the mechanisms of exfoliation has yet to emerge. Here, a microreactor based on the hydrodynamic cavitation (HC) on a chip concept is introduced to exfoliate graphite in a totally green process which involves only natural graphite flakes and water. HC-treated graphitic materials were characterized by UV-Vis and Raman spectroscopy, DLS (Dynamic Light Scattering), AFM (Atomic Force Microscopy), and SEM (Scanning Electron Microscopy) analyses. The present sustainable reactor system was found to exfoliate thick and large graphite particles to nano-sized sheets (similar to 1.2 nm) with a lateral size of similar to 500 nm to 5 mu m.
  •  
3.
  • Jafarpour, Mohammad, et al. (författare)
  • Electrospinning of ternary composite of PMMA-PEG-SiO2 nanoparticles : Comprehensive process optimization and electrospun properties
  • 2021
  • Ingår i: Materials Today Communications. - : Elsevier BV. - 2352-4928. ; 29
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrospinning has been realized to be a promising method for creating nano-composite fibers due to its significant growth for producing innovative composites with advanced applications. In this method a polymeric solution subjected to an electrohydrodynamic process and slim charged liquid jet is formed inside a high potential electric field. The high voltage enables the production of continuously long fibers on a collector surface. Addition of different polymers and NPs to the one-component solution to modify the physicochemical characteristic and decorating the surface of electrospun fibers has proven to be challenging and imperative for many fields especially novel bioengineering and filtration applications. In this study, the effects of major parameters on the fabrication of electrospun fibers were extensively investigated. At the first step, formation of nanofibers on the surface of collector and optimization of process parameters were determined based on the mean diameter of resulting fibers, through SEM (Scanning Electron Microscopy) images. The optimum values for concentration, applied voltage, the distance between the tip of needle and collector, and flow rate determined to be 10 wt%, 12 kV, 20 cm, and 0.6 mL h(-1), respectively. Afterwards, the hydrophilicity of fibers was modified by adding different poly (ethylene glycol) (PEG) concentrations (20, 30, and 40 wt%) to the polymeric solution. The contact angle analysis revealed that the poly (methyl methacrylate) (PMMA) and 30 wt% PEG fabricated fibrous mat exhibited a better wettability and 71.61% lower hydrophobicity compared to pure PMMA electrospun mats. In the next step, silica NPs (nanoparticles) were introduced to the polymeric solution of electrospinning in the form of an IPA (isopropanol)-based collide solution. The dispersed solution-based addition of silica NPs prevented the aggregation state of NPs in the nanofibers. The addition of silica nanoparticles also changed the thermal and mechanical properties of the ternary composite, which were analyzed in TGA (thermogravimetric analysis) and tensile tests. Noteworthy, the addition of 30% PEG and silica NPs increase 3 times the tensile strength and around 2 times elongation in comparison with pure PMMA electrospun mats. These results highlight that the hybrid composite leads to a promising new electrospun mat for filtration and bioengineering applications.
  •  
4.
  • Rokhsar Talabazar, Farzad, et al. (författare)
  • Design and fabrication of a vigorous "cavitation-on-a-chip" device with a multiple microchannel configuration
  • 2021
  • Ingår i: Microsystems & Nanoengineering. - : Springer Nature. - 2055-7434. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrodynamic cavitation is one of the major phase change phenomena and occurs with a sudden decrease in the local static pressure within a fluid. With the emergence of microelectromechanical systems (MEMS), high-speed microfluidic devices have attracted considerable attention and been implemented in many fields, including cavitation applications. In this study, a new generation of 'cavitation-on-a-chip' devices with eight parallel structured microchannels is proposed. This new device is designed with the motivation of decreasing the upstream pressure (input energy) required for facile hydrodynamic cavitation inception. Water and a poly(vinyl alcohol) (PVA) microbubble (MB) suspension are used as the working fluids. The results show that the cavitation inception upstream pressure can be reduced with the proposed device in comparison with previous studies with a single flow restrictive element. Furthermore, using PVA MBs further results in a reduction in the upstream pressure required for cavitation inception. In this new device, different cavitating flow patterns with various intensities can be observed at a constant cavitation number and fixed upstream pressure within the same device. Moreover, cavitating flows intensify faster in the proposed device for both water and the water-PVA MB suspension in comparison to previous studies. Due to these features, this next-generation 'cavitation-on-a-chip' device has a high potential for implementation in applications involving microfluidic/organ-on-a-chip devices, such as integrated drug release and tissue engineering.
  •  
5.
  • Talabazar, Farzad Rokhsar, et al. (författare)
  • Chemical effects in "hydrodynamic cavitation on a chip" : The role of cavitating flow patterns
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 445
  • Tidskriftsartikel (refereegranskat)abstract
    • Amongst the advanced oxidation processes (AOPs), hydrodynamic cavitation (HC) has emerged as one of the most cost-efficient, simple and ecologically friendly approaches in the recent decade. This type of the cavitation, in contrast to its counterpart (acoustic cavitation), has a huge potential to upscale to the industrial levels. In the recent years, the micro-scale HC (HC on a chip concept) has exhibited favorable efficacy in terms of nucleation type, surface effects and flow pattern dominancy. In this study, the chemical effects of the HC on a chip concept are shown for the first time by considering the effects of the cavitating flow patterns. So, this is the first attempt to understand the effects of the inception and developed cavitating flow patterns on the chemical reactions during the bubble collapse in the micro-scale. In addition, a particular attention is paid to the chemical reaction effects before the cavitation bubble observation in this investigation. Our results indicated that the triiodide releasing amount was interestingly maximum before the inception occurred, especially at the first cycle. The released amount decreased at the inception and increased for the case of the developed twin cavities. We also showed that, comparing to our previous studies, the cavitation arrived at a relatively lower upstream pressure in the open loop cavitation test rig. Therefore, the outcome of this approach reveals the significance of the in-depth investigations of the complex and very transient nature of the cavitation at different flow patterns. Furthermore, this study implied that reactors benefitting HC on a chip concept will be environmentally friendly tools for producing products from the wastes and worthless materials in the near future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy