SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alin Jonas) "

Sökning: WFRF:(Alin Jonas)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alin, Jonas (författare)
  • Analytical tools for identification and quantification of migrants from food packaging
  • 2011
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Polymers are frequently used as packaging material for food and therefore it is of concern that migrating substances such as additives or degradation products could contaminate the food. Sometimes also processing or microwave heating of food is performed directly inside the food package, which could lead to increased migration. Chromatographic and mass spectrometric analysis techniques can be used to detect, identify and quantify compounds that are released from polymers during such scenarios and, with suitable extraction and analysis techniques for example solid phase micro extraction coupled to gas chromatography – mass spectrometry (SPME-GC-MS), the migrating substances can be identified and quantified. We have previously detected the emission of low molecular weight substances from polymers using SPME-GC-MS [1,2]. With these analysis techniques we have shown that significant antioxidant degradation takes place during microwave heating of the polypropylene (PP) packages in the fatty food simulants, which further led to increased migration of potentially toxic degradation products into the food [3]. No antioxidant degradation was observed in aqueous food simulants or during conventional heating at the same temperature. Electrospray ionization-mass spectrometry (ESI-MS) was shown to be a valuable tool for studying the less volatile migrants. Antioxidant migration rates from three PP materials to fatty food simulants differed largely with respect to the PP type and increased with decreasing degree of crystallinity in the materials, as determined by high performance liquid chromatography (HPLC) [4]. The extraction efficiency of a headspace - solid phase microextraction (HS-SPME) method could be predicted from the analyte properties using a partial least squares (PLS) regression model [5].   References [1] M Gröning, M Hakkarainen, Journal of Chromatography, (2001) 932, 1-11 [2] M Hakkarainen, Journal of Chromatography, (2003)  1010, 9-16 [3] J. Alin and M. Hakkarainen, Journal of Agricultural and Food Chemistry, (2011) DOI: 10.1021/jf1048639 [4] J. Alin and M. Hakkarainen, Journal of Applied Polymer Science, (2010) 118, 1084-1093 [5] J. Alin and M. Hakkarainen, manuscript
  •  
2.
  • Alin, Jonas, et al. (författare)
  • Combined Chromatographic and Mass Spectrometric Toolbox for Fingerprinting Migration from PET Tray during Microwave Heating
  • 2013
  • Ingår i: Journal of Agricultural and Food Chemistry. - : American Chemical Society (ACS). - 0021-8561 .- 1520-5118. ; 61:6, s. 1405-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • A combined chromatographic and mass spectrometric toolbox was utilized to determine the interactions between poly(ethylene terephthalate) (PET) food packaging and different food simulants during microwave heating. Overall and specific migration was determined by combining weight loss measurements with gas chromatography-mass spectrometry (GC-MS) and electrospray ionization mass spectrometry (ESI-MS). This allowed mapping of low molecular weight migrants in the molecular range up to 2000 g/mol. Microwave heating caused significantly faster migration of cyclic oligomers into ethanol and isooctane as compared to migration during conventional heating at the same temperature. This effect was more significant at lower temperature at which diffusion rates are generally lower. It was also shown that transesterification took place between PET and ethanol during microwave heating, leading to formation of diethyl terephthalate. The detected migrants included cyclic oligomers from dimer to hexamer, in most cases containing extra ethylene glycol units, and oxidized Irgafos 168. ESI-MS combined with CID MS-MS was an excellent tool for structural interpretation of the nonvolatile compounds migrating to the food simulants. The overall migration was below the overall migration limit of 10 mg/dm(2) set by the European commission after 4 h of microwave heating at 100 degrees C in all studied food simulants.
  •  
3.
  • Alin, Jonas, et al. (författare)
  • Microwave heating causes rapid degradation of antioxidants in polypropylene packaging leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS
  • 2011
  • Ingår i: Journal of Agricultural and Food Chemistry. - : American Chemical Society (ACS). - 0021-8561 .- 1520-5118. ; 59:10, s. 5418-5427
  • Tidskriftsartikel (refereegranskat)abstract
    • Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.
  •  
4.
  • Alin, Jonas (författare)
  • Microwave heating effects on degradation and migration of additives from polypropylene packaging
  • 2011
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The effect of different food types, polymer qualities and microwaves on the overall and specific migration during microwave heating of plastic packaging was investigated to better understand the packaging-food interactions and the effect of microwaves on food packaging. This work focuses on the migration of chemical compounds to food simulants from commercially available polypropylene packages. Packages used were made of polypropylene homopolymer (PP), co-polymer (PP-C) and random co-polymer (PP-R). Polymers matrix changes were monitored by following possible changes in crystallinity after microwave heating. Antioxidants Irgafos 168 and Irganox 1010 were present in all the three PP packages. Other volatiles, primarily degradation products of antioxidants, were also detected and identified in the unaged packages. Significant antioxidant degradation took place during microwave heating of the packages in the fatty food simulants 90/10 isooctane/ethanol and ethanol resulting in the formation and migration of degradation products while no degradation of antioxidants was detected during conventional heating of the packages in the fatty food simulants. Antioxidant Irgafos 168 and Irganox 1010 migration rates were otherwise similar during microwave heating as during conventional heating to the fatty food simulants and antioxidant diffusion coefficients were similar to earlier established values obtained during conventional heating. Antioxidant migration rates from the three polymers to fatty food simulants differed largely with respect to PP type and increased with decreasing degree of crystallinity in the materials, PP-R showing the highest migration rate. Swelling in isooctane food simulant caused the antioxidant diffusion coefficients to increase by factors of 100-1000 at 80 ºC and decreased the temperature dependence of antioxidant migration. It also increased the overall migration to above established overall migration limits during both microwave and conventional heating. Electrospray ionization mass spectrometry (ESI-MS) was shown to be a valuable new tool for additive migration analysis of compounds not detectable by HPLC or GC-MS.
  •  
5.
  • Alin, Jonas (författare)
  • Migration from plastic food packaging during microwave heating
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Microwave heating of food has increased rapidly as a food processing technique. This increases the concern that chemicals could migrate from food packaging to food. The specific effect of microwave heating in contrast to conventional heating on overall and specific migration from common plastic food storage boxes was studied in this work. The purpose was especially to determine the interaction effects of different plastics in contact with different types of foods during microwave heating. The study focused on polycarbonate (PC), poly(ethylene terephthalate) (PET), polypropylene homo-polymer (PP), co-polymer (PP-C) and random co-polymer (PP-R) packages. The migration determinations were evaluated at controlled times and temperatures, using a MAE device. The migrants were analyzed by GC-MS and HPLC. ESI-MS was evaluated as a new tool for migration determinations. Food/food simulant absorption and changes in degree of crystallinity during heating were also followed.Significant degradation of antioxidants Irgafos 168 and Irganox 1010 in PP packages occurred during microwave heating of the packages in food simulants containing ethanol, resulting in the formation of antioxidant degradation products. Degradation of PC by Fries chain rearrangement reaction leading to formation of 9,9-dimethylxanthene, and transesterification of PET leading to formation of diethyl terephthalate, were also observed after microwave heating the packages in ethanol and 90/10 isooctane/ethanol. These reactions were not observed during conventional heating of the packages at the same temperature, or after microwave heating of the packages in liquid food (coconut milk). The microwave heating also significantly increased the migration of cyclic oligomers from PET into ethanol and isooctane at 80 °C. Migration of compounds into coconut milk was slightly lower than calculated amounts using the EU mathematical model to predict migration of additives into foodstuffs. The results thus show that the use of ethanol as a fat food simulant during microwave heating can lead to a significant overestimation of migration as well as degradation of polymer or the incorporated additives.Some other detected migrants were dimethylbenzaldehyde, 4-ethoxy-ethyl benzoate, benzophenone, m-tert-butyl phenol and 1-methylnaphthalene. All identified migrants with associated specific migration limit (SML) values migrated in significantly lower amounts than the SML values during 1 h of microwave heating at 80 °C. The antioxidant diffusion coefficients in PP and PP co-polymers showed larger relative differences than the corresponding degrees of crystallinity in the same polymers and PP-R showed by far the fastest migration of antioxidants.
  •  
6.
  • Alin, Jonas, et al. (författare)
  • Migration from polycarbonate packaging to food simulants during microwave heating
  • 2012
  • Ingår i: Polymer degradation and stability. - : Elsevier BV. - 0141-3910 .- 1873-2321. ; 97:8, s. 1387-1395
  • Tidskriftsartikel (refereegranskat)abstract
    • The interactions between polycarbonate (PC) packaging and different food simulants during microwave heating were evaluated by identifying the compounds migrating into aqueous, alcoholic and fatty food simulants. The migration of compounds, such as 9,9-dimethylxanthene and m-tert-butyl-phenol, from the PC package to ethanol and isooctane increased significantly during microwave heating as compared to conventional heating. The increase in migration can be explained by degradation caused by microwave heating and/or stronger food simulant interactions. Depending on the food simulant the migrants were quantified either by multiple headspace–solid-phase micro-extraction (MHS-SPME) or direct injection in combination with gas chromatography-mass spectrometry. A partial least squares (PLS) regression model was developed to predict the extraction efficiency for headspace–solid-phase micro-extraction (HS-SPME) of food package migrants from the analyte properties. The most significant property for prediction of the enrichment factors was the octanol-water partition coefficient (log Kow). Polydimethylsiloxane (PDMS) and polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibers were compared for the extraction of the migrants. High correlation was found between the PDMS and PDMS/DVB enrichment factors (R2=0.98), but the extraction by PDMS/DVB fiber was much more efficient compared to the extraction by PDMS fiber. The detection limits after SPME extraction by PDMS/DVB fiber were 1, 0.1 and 3 ng/L for 4-ethoxy-ethyl-benzoate, 2,4-di-tert-butyl-phenol and benzophenone, respectively.
  •  
7.
  • Alin, Jonas (författare)
  • Quality control of polymeric packaging and recycled materials by chromatographic and mass spectrometric techniques
  • 2011
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • During the lifetime polymers can emit degradation products and additives to the surrounding environment. The development of analytical techniques to identify and quantify migrated compounds is essential to assess the safety of the plastic products. This is especially important when plastic materials are used in demanding or otherwise sensitive applications such as toys, medical products, food packaging or water pipes as well as when new types of polymeric materials such as nanocomposites, degradable materials, functional materials or recycled materials are developed. We have in several studies applied chromatographic and mass spectrometric techniques for analysis of emissions from different polymeric materials. As an example we have shown that microwave heating can lead to accelerated degradation of additives incorporated in the polypropylene (PP)packages, which further led to increased migration of potentially toxic degradation products into the food [1]. Significant antioxidant degradation was shown to take place during microwave heating of the packages in the fatty food simulants, while no degradation of antioxidants was detected during conventional heating of the packages in the fatty food simulants. No antioxidant degradation was observed in aqueous food simulants. Antioxidant migration rates from three PPmaterials to fatty food simulants differed largely with respect to the PP type and increased with decreasing degree of crystallinity in the materials [2]. Stereocomplexation improved the migration resistance of novel polylactide based packaging materials in contact with food simulants [3]. When polymeric materials are recycled one point of concern is the presence of unknown low molecular weight products in the materials. In addition the recycled materials could be more susceptible for further degradation even when further stabilized. We have shown that increasing amounts of degradation products are formed during aging of in-plant recycling of polyamide 6.6[4]. The amount of degradation products could also be correlated to deterioration of material properties such as mechanical properties. The odor coming polypropylene materials containing recycled milled phenol-formaldehyde glass-fiber scrap was shown to be caused by the presence of phenol in the materials [5].1. J. Alin and M. Hakkarainen, Journal of Agricultural and Food Chemistry (2011) 59(10), 5418-54272. J. Alin and M. Hakkarainen, Journal of Applied Polymer Science (2010) 118(2), 1084-1093.3. Y. Bor, J. Alin and M. Hakkarainen, Packaging Technology and Science, DOI: 10.1002/pts.990.4. M. Gröning and M. Hakkarainen, Journal of Applied Polymer Science, (2002) 86, 3396-34075. M. Gröning, H. Eriksson, M. Hakkarainen and A.-C. Albertsson, Polymer Degradation andStability, (2006) 91, 1815-1823
  •  
8.
  •  
9.
  • Alin, Jonas, et al. (författare)
  • Type of Polypropylene Material Significantly Influences the Migration of Antioxidants from Polymer Packaging to Food Simulants During Microwave Heating
  • 2010
  • Ingår i: Journal of Applied Polymer Science. - : Wiley. - 0021-8995 .- 1097-4628. ; 118:2, s. 1084-1093
  • Tidskriftsartikel (refereegranskat)abstract
    • Three different polypropylene materials, polypropylene homopolymer (PP), propylene-ethylene random copolymer (PP-R), and propylene-ethylene copolymer (PP-C) are commonly used in plastic containers designed for microwave heating of food. Migration of antioxidants, Irganox 1010 and Irgafos 168, from PP. PP-R, and PP-C during microwave heating in contact with different food simulants was investigated by utilizing microwave assisted extraction (MAE) and high performance liquid chromatography (HPLC). The polypropylene material significantly influenced the migration rate, which decreased in the order of increasing degree of crystallinity in the materials. PP homopolymer was the most migration resistant of the studied materials especially in contact with fatty food simulants. The use of isooctane as fatty food simulant resulted in rapid depletion of antioxidants, while migration to another fatty food simulant, 96% ethanol, was much more limited. Migration to aqueous and acidic food simulants was in most cases under the detection limits irrespective of microwaving time and temperature. The diffusion coefficients were similar to what have been found previously under similar conditions but without microwaves. The effect of swelling was shown by the large increase in the calculated diffusion coefficients when isooctane was used as food simulant instead of 96% ethanol. (C) 2010 Wiley Periodicals, Inc. I Appl Polym Sci 118: 1084-1093,2010
  •  
10.
  • Bor, Yasemin, et al. (författare)
  • Electrospray Ionization-Mass Spectrometry Analysis Reveals Migration of Cyclic Lactide Oligomers from Polylactide Packaging in Contact with Ethanolic Food Simulant
  • 2012
  • Ingår i: Packaging technology & science. - : Wiley. - 0894-3214 .- 1099-1522. ; 25:7, s. 427-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrospray ionization-mass spectrometry analysis revealed rapid migration of cyclic oligomers from polylactide (PLA) packaging when stored in contact with 96% ethanol. The mass losses in contact with water, 3% acetic acid, 10% ethanol and isooctane were 3 to 5 times smaller and no migration of cyclic oligomers was observed. The presence of cyclic oligomers in the original PLA films and their solubility in ethanol, thus, explains the rapid mass loss for PLA in contact with ethanolic food simulant. On prolonged ageing no further mass loss was observed in 96% ethanol, whereas mass loss in aqueous food simulants increased because of hydrolysis of PLA matrix or the cyclic oligomers to water-soluble linear products. The mass losses were generally somewhat smaller for the stereocomplex material compared with the poly-l-lactide materials. Similar trend was observed for solvent uptakes, which is easily explained by the higher degree of crystallinity and stronger secondary interactions in the stereocomplex material. The use of ethanol as a fatty food simulant for PLA materials could, thus, lead to overestimation of the overall migration values.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy