SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Allaria Enrico) "

Sökning: WFRF:(Allaria Enrico)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Khan, Shaukat, et al. (författare)
  • Evolution of density-modulated electron beams in drift sections
  • 2024
  • Ingår i: Physical Review Accelerators and Beams. - : American Physical Society. - 2469-9888. ; 27:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Initiating the amplification process in a short-wavelength free-electron laser (FEL) by external seed laser pulses results in radiation with a high degree of longitudinal and transverse coherence. The basic layout in seeded harmonic generation involves a periodic electron energy modulation by laser-electron interaction in a short undulator (the "modulator"), which is converted into a density modulation in a dispersive section immediately followed by a long FEL undulator (the "radiator") tuned to a harmonic of the seed laser wavelength. With the advent of more complex seeding schemes, density-modulated beams may need to be transported in drift sections before entering the radiator. Long FEL undulators may also contain several drift spaces to accommodate focusing elements and diagnostics. Therefore, it is of general interest to study the evolution of density-modulated electron beams in drift sections under the influence of repulsive Coulomb forces. At FERMI, a seeded FEL user facility in Trieste, Italy, systematic studies of the impact of varying drift length on coherent harmonic emission were undertaken. In order to make the underlying physics transparent, the emphasis of this paper is on reproducing the experimental findings with analytical estimates and a simple one-dimensional numerical model. Furthermore, the Coulomb forces in a drift section may be employed to enhance the laser-induced energy modulation and yield an improved density modulation before entering the FEL radiator.
  •  
2.
  • Kumar Maroju, Praveen, et al. (författare)
  • Attosecond pulse shaping using a seeded free-electron laser
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578, s. 386-391
  • Tidskriftsartikel (refereegranskat)abstract
    • Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters, multilayer mirrors and manipulation of the driving field. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.
  •  
3.
  • Maroju, Praveen K., et al. (författare)
  • A Novel Attosecond Timing Tool for Free-Electron Laser Experiment
  • 2020
  • Ingår i: High Intensity Lasers and High Field Phenomena 2020. - 9781943580736
  • Konferensbidrag (refereegranskat)abstract
    • We demonstrate a novel timing tool for Free-Electron Lasers to determine the delay between an attosecond pulse train and infrared pulse with sub-optical-cycle resolu-. tion.
  •  
4.
  • Maroju, Praveen Kumar, et al. (författare)
  • Complex attosecond waveform synthesis at fel fermi
  • 2021
  • Ingår i: Applied Sciences (Switzerland). - : MDPI AG. - 2076-3417. ; 11:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FELs) can produce radiation in the short wavelength range extending from the extreme ultraviolet (XUV) to the X-rays with a few to a few tens of femtoseconds pulse duration. These facilities have enabled significant breakthroughs in the field of atomic, molecular, and optical physics, implementing different schemes based on two-color photoionization mechanisms. In this article, we present the generation of attosecond pulse trains (APTs) at the seeded FEL FERMI using the beating of multiple phase-locked harmonics. We demonstrate the complex attosecond waveform shaping of the generated APTs, exploiting the ability to manipulate independently the amplitudes and the phases of the harmonics. The described generalized attosecond waveform synthesis technique with an arbitrary number of phase-locked harmonics will allow the generation of sub-100 as pulses with programmable electric fields.
  •  
5.
  • Pop, Mihai, et al. (författare)
  • Characterization of FEL spectra using specific figures of merit
  • 2019
  • Ingår i: Proceedings of the 39th International Free-Electron Laser Conference, FEL 2019. - 9783954502103 ; , s. 388-391
  • Konferensbidrag (refereegranskat)abstract
    • There is an increasing demand from the user community for high quality FEL radiation. The spectrum of this radiation can prove to be a useful tool in characterizing the FEL process. Starting from a tool initially developed at FERMI we extend its capabilities to be able to analyze the modal components of the FEL spectrum. In this paper we will describe and compare two different figures of merit and offer initial bench-marking with respect to classic figure of merit for spectra such as FWHM and RMS.
  •  
6.
  • Pop, Mihai, et al. (författare)
  • Mitigation of CSR induced spectral broadening in EEHG FEL
  • 2023
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 1048
  • Tidskriftsartikel (refereegranskat)abstract
    • Externally seeded schemes have offered a major leap in improving the longitudinal coherence of FELs in the EUV and soft X-ray range. The Echo Enabled Harmonic Generation (EEHG) technique creates bunching at wavelengths of a few nanometers in two stages of longitudinal phase space manipulation, each consisting of an energy modulator and a chicane. Compared to other seeding techniques, EEHG is less sensitive to electron beam phase space distortions occurring during acceleration and compression. However the strong chicane needed in the first stage makes the system vulnerable to Coherent Synchrotron Radiation (CSR), which imprints a long-wavelength energy modulation on the electron bunch after the EEHG process has been initiated. Coupled with the second dispersive section, this modulation creates a position dependent change in the final bunching wavelength. In this work we show that tailoring the second seed laser wavelength can successfully compensate for the varying energy profile induced by CSR.
  •  
7.
  • Wituschek, Andreas, et al. (författare)
  • High-gain harmonic generation with temporally overlapping seed pulses and application to ultrafast spectroscopy
  • 2020
  • Ingår i: Optics Express. - 1094-4087. ; 28, s. 29976-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Collinear double-pulse seeding of the High-Gain Harmonic Generation (HGHG) process in a free-electron laser (FEL) is a promising approach to facilitate various coherent nonlinear spectroscopy schemes in the extreme ultraviolet (XUV) spectral range. However, in collinear arrangements using a single nonlinear medium, temporally overlapping seed pulses may introduce nonlinear mixing signals that compromise the experiment at short time delays. Here, we investigate these effects in detail by extending the analysis described in a recent publication (Wituschek et al., Nat. Commun., 11, 883, 2020). High-order fringe-resolved autocorrelation and wave packet interferometry experiments at photon energies > 23 eV are performed, accompanied by numerical simulations. It turns out that both the autocorrelation and the wave-packet interferometry data are very sensitive to saturation effects and can thus be used to characterize saturation in the HGHG process. Our results further imply that time-resolved spectroscopy experiments are feasible even for time delays smaller than the seed pulse duration.
  •  
8.
  • Wituschek, Andreas, et al. (författare)
  • Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties. In particular, direct control and manipulation of the phase of individual pulses within an XUV pulse sequence opens exciting possibilities for coherent control and multidimensional spectroscopy, but has not been accomplished. Here, we overcome these constraints in a highly time-stabilized and phase-modulated XUV-pump, XUV-probe experiment, which directly probes the evolution and dephasing of an inner subshell electronic coherence. This approach, avoiding any XUV optics for direct pulse manipulation, opens up extensive applications of advanced nonlinear optics and spectroscopy at XUV wavelengths.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy