SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Alm Rosenblad Magnus 1957) "

Search: WFRF:(Alm Rosenblad Magnus 1957)

  • Result 1-10 of 43
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lind, Ulrika, et al. (author)
  • Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity
  • 2017
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:7
  • Journal article (peer-reviewed)abstract
    • Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854) (= Amphibalanus improvisus) can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2), the aquaglyceroporins (Glp1, Glp2), the unorthodox aquaporin (Aqp12) and the arthropod-specific big brain aquaporin (Bib). Interestingly, we also found two big brain-like proteins (BibL1 and BibL2) constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold) decrease in the mantle tissue in low salinity (3 PSU) compared to high salinity (33 PSU). Our study provides a base for future mechanistic studies on the role of aquaporins in osmoregulation. © 2017 Lind et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
2.
  • Lind, Ulrika, et al. (author)
  • Molecular Characterization of the alpha-Subunit of Na+/K+ ATPase from the Euryhaline Barnacle Balanus improvisus Reveals Multiple Genes and Differential Expression of Alternative Splice Variants
  • 2013
  • In: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 8:10
  • Journal article (peer-reviewed)abstract
    • The euryhaline bay barnacle Balanus improvisus has one of the broadest salinity tolerances of any barnacle species. It is able to complete its life cycle in salinities close to freshwater (3 PSU) up to fully marine conditions (35 PSU) and is regarded as one of few truly brackish-water species. Na+/K+ ATPase (NAK) has been shown to be important for osmoregulation when marine organisms are challenged by changing salinities, and we therefore cloned and examined the expression of different NAKs from B. improvisus. We found two main gene variants, NAK1 and NAK2, which were approximately 70% identical at the protein level. The NAK1 mRNA existed in a long and short variant with the encoded proteins differing only by 27 N-terminal amino acids. This N-terminal stretch was coded for by a separate exon, and the two variants of NAK1 mRNAs appeared to be created by alternative splicing. We furthermore showed that the two NAK1 isoforms were differentially expressed in different life stages and in various tissues of adult barnacle, i.e the long isoform was predominant in cyprids and in adult cirri. In barnacle cyprid larvae that were exposed to a combination of different salinities and pCO(2) levels, the expression of the long NAK1 mRNA increased relative to the short in low salinities. We suggest that the alternatively spliced long variant of the Nak1 protein might be of importance for osmoregulation in B. improvisus in low salinity conditions.
  •  
3.
  • Wrange, Anna-Lisa, 1981, et al. (author)
  • The Story of a Hitchhiker: Population Genetic Patterns in the Invasive Barnacle Balanus (Amphibalanus) improvisus Darwin 1854
  • 2016
  • In: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Understanding the ecological and evolutionary forces that determine the genetic structure and spread of invasive species is a key component of invasion biology. The bay barnacle, Balanus improvisus (= Amphibalanus improvisus), is one of the most successful aquatic invaders worldwide, and is characterised by broad environmental tolerance. Although the species can spread through natural larval dispersal, human-mediated transport through (primarily) shipping has almost certainly contributed to the current global distribution of this species. Despite its worldwide distribution, little is known about the phylogeography of this species. Here, we characterize the population genetic structure and model dispersal dynamics of the barnacle B. improvisus, and describe how human-mediated spreading via shipping as well as natural larval dispersal may have contributed to observed genetic variation. We used both mitochondrial DNA (cytochrome c oxidase subunit I: COI) and nuclear microsatellites to characterize the genetic structure in 14 populations of B. improvisus on a global and regional scale (Baltic Sea). Genetic diversity was high in most populations, and many haplotypes were shared among populations on a global scale, indicating that longdistance dispersal (presumably through shipping and other anthropogenic activities) has played an important role in shaping the population genetic structure of this cosmopolitan species. We could not clearly confirm prior claims that B. improvisus originates from the western margins of the Atlantic coasts; although there were indications that Argentina could be part of a native region. In addition to dispersal via shipping, we show that natural larval dispersal may play an important role for further colonisation following initial introduction.
  •  
4.
  • Abramova, Anna, 1990, et al. (author)
  • Sensory receptor repertoire in cyprid antennules of the barnacle Balanus improvisus
  • 2019
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:5
  • Journal article (peer-reviewed)abstract
    • - Barnacle settlement involves sensing of a variety of exogenous cues. A pair of antennules is the main sensory organ that the cyprid larva uses to explore the surface. Antennules are equipped with a number of setae that have both chemo- and mechanosensing function. The current study explores the repertoire of sensory receptors in Balanus improvisus cyprid antennules with the goal to better understand sensory systems involved in the settling behavior of this species. We carried out transcriptome sequencing of dissected B. improvisus cyprid antennules. The generated transcriptome assembly was used to search for sensory receptors using HMM models. Among potential chemosensory genes, we identified the ionotropic receptors IR25a, IR8a and IR93a, and several divergent IR candidates to be expressed in the cyprid antennules. We found one gustatory-like receptor but no odorant receptors, chemosensory or odorant-binding proteins. Apart from chemosensory receptors, we also identified 13 potential mechanosensory genes represented by several transient receptor potential channels (TRP) subfamilies. Furthermore, we analyzed changes in expression profiles of IRs and TRPs during the B. improvisus settling process. Several of the sensory genes were differentially expressed during the course of larval settlement. This study gives expanded knowledge about the sensory systems present in barnacles, a taxonomic group for which only limited information about receptors is currently available. It furthermore serves as a starting point for more in depth studies of how sensory signaling affects settling behavior in barnacles with implications for preventing biofouling. © 2019 Abramova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
5.
  • Abramova, Anna, 1990, et al. (author)
  • The complex barnacle perfume: identification of waterborne pheromone homologues in Balanus improvisus and their differential expression during settlement
  • 2019
  • In: Biofouling. - : Informa UK Limited. - 0892-7014 .- 1029-2454. ; 35:4, s. 416-428
  • Journal article (peer-reviewed)abstract
    • A key question in barnacle biology is the nature of cues that induce gregarious settlement. One of the characterised cues is the waterborne settlement pheromone (WSP). This study aimed to identify WSP homologues in Balanus improvisus and to investigate their expression during settlement. Six WSP homologues were identified, all containing an N-terminal signal peptide, a conserved core region, and a variable C-terminus comprising several -GR- and -HDDH- motifs. The B. improvisus WSP homologues were expressed in all settlement stages but showed different expression patterns. The homologue most similar to the B. amphitrite WSP was the most abundant and was constantly expressed during settlement. In contrast, several of the other WSP homologues showed the greatest expression in the juvenile stage. The presence of several WSP homologues suggests the existence of a pheromone mix, where con-specificity might be determined by a combination of sequence characteristics and the concentration of the individual components.
  •  
6.
  • Adrian-Kalchhauser, Irene, et al. (author)
  • The mitochondrial genome sequences of the round goby and the sand goby reveal patterns of recent evolution in gobiid fish
  • 2017
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 18:1
  • Journal article (peer-reviewed)abstract
    • Background Vertebrate mitochondrial genomes are optimized for fast replication and low cost of RNA expression. Accordingly, they are devoid of introns, are transcribed as polycistrons and contain very little intergenic sequences. Usually, vertebrate mitochondrial genomes measure between 16.5 and 17 kilobases (kb). Results During genome sequencing projects for two novel vertebrate models, the invasive round goby and the sand goby, we found that the sand goby genome is exceptionally small (16.4 kb), while the mitochondrial genome of the round goby is much larger than expected for a vertebrate. It is 19 kb in size and is thus one of the largest fish and even vertebrate mitochondrial genomes known to date. The expansion is attributable to a sequence insertion downstream of the putative transcriptional start site. This insertion carries traces of repeats from the control region, but is mostly novel. To get more information about this phenomenon, we gathered all available mitochondrial genomes of Gobiidae and of nine gobioid species, performed phylogenetic analyses, analysed gene arrangements, and compared gobiid mitochondrial genome sizes, ecological information and other species characteristics with respect to the mitochondrial phylogeny. This allowed us amongst others to identify a unique arrangement of tRNAs among Ponto-Caspian gobies. Conclusions Our results indicate that the round goby mitochondrial genome may contain novel features. Since mitochondrial genome organisation is tightly linked to energy metabolism, these features may be linked to its invasion success. Also, the unique tRNA arrangement among Ponto-Caspian gobies may be helpful in studying the evolution of this highly adaptive and invasive species group. Finally, we find that the phylogeny of gobiids can be further refined by the use of longer stretches of linked DNA sequence.
  •  
7.
  • Adrian-Kalchhauser, I., et al. (author)
  • The round goby genome provides insights into mechanisms that may facilitate biological invasions
  • 2020
  • In: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 18:1
  • Journal article (peer-reviewed)abstract
    • Background The invasive benthic round goby (Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. Results We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochrome P450 enzymes, a remarkably diverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby's capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions. Conclusions The expanded innate immune system of round goby may potentially contribute to its ability to colonize novel areas. Since other gene families also feature copy number expansions in the round goby, and since other Gobiidae also feature fascinating environmental adaptations and are excellent colonizers, further long-read genome approaches across the goby family may reveal whether gene copy number expansions are more generally related to the ability to conquer new habitats in Gobiidae or in fish.
  •  
8.
  • Alm Rosenblad, Magnus, 1957 (author)
  • Computational identification of RNA and protein components from the Signal Recognition Particle
  • 2005
  • Doctoral thesis (other academic/artistic)abstract
    • Problem. The signal recognition particle (SRP) is a ribonucleoprotein particle that targets proteins to the endoplasmic reticulum in eukaryotes, to the plasma membrane in Archaea and Bacteria and to the thylakoid membrane in chloroplasts of photosynthetic organisms. It has one RNA component and 1 6 proteins. The eukaryotic particle is composed of one S domain responsible for signal recognition and one Alu domain responsible for translation elongation arrest. In many phylogenetic groups the SRP is not characterized. Therefore, we aim to identify SRP component genes by computational screening of a large number of organisms where genomic information is available. Methods. For the protein gene identification, we relied on methods based on primary sequence alignments (BLAST, FASTA), profile searches (PSI-BLAST, HMMER, Profilescan), and secondary structure prediction (PSI-Pred). The main focus in this work is the identification of SRP RNA. It is highly diverse in its structure and has a low primary sequence conservation between different phylogenetic groups. As a consequence, standard sequence analysis tools, such as BLAST, are not useful. We have developed a tool for the identification of SRP RNA (SRPscan) using algorithms for pattern matching and covariance analysis of secondary structures.Results. We have carried out an extensive inventory of SRP components by screening available genomic sequences. As a result we have identified a large number of novel genes. The protein and RNA sequences are presented in the SRP database (SRPDB). We have identified full or partial SRP RNA genes in virtually all organisms where genomic sequences of nearly full genome coverage are available, and the findings have led to a proposal of a new nomenclature for SRP RNA.In an analysis of bacterial RNAs we found species with an unusual URRC tetraloop and we identified an RNA from deeply branching gram-negative bacterium Thermotoga that is of the gram-positive Bacillus type. It was previously believed that chloroplasts do not have an SRP RNA. However, we have shown that chloroplast genomes of red algae or red algal origin, as well as some green algae, encode a bacterial type SRP RNA.Eukaryotic SRP RNAs are highly divergent in their structures, mainly in the Alu domain. Based on an analysis of fungal RNAs we were able to present a novel secondary structure model of these RNAs. Analysis of eukaryotic RNAs includes a number of unexpected findings. In the fungal groups Basidiomycota and Zygomycota the SRP RNA has an Alu domain that conforms to the standard mammalian SRP RNA structure. The external loop of helix 8 is a tetraloop as a rule, but in several protists this sequence is a pentaloop. Finally, we suggest that some eukaryal species like Microsporidia might lack an SRP Alu domain.Conclusion. By computational screening of genomic sequences we have identified a large number of novel SRP RNA and proteins components. The results of these studies provide significant insights into the structure, function and phylogeny of the SRP.
  •  
9.
  • Alm Rosenblad, Magnus, 1957, et al. (author)
  • Detection of signal recognition particle (SRP) RNAs in the nuclear ribosomal internal transcribed spacer 1 (ITS1) of three lineages of ectomycorrhizal fungi (Agaricomycetes, Basidiomycota)
  • 2016
  • In: MycoKeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; 13, s. 21-33
  • Journal article (peer-reviewed)abstract
    • During a routine scan for Signal Recognition Particle (SRP) RNAs in eukaryotic sequences, we surprisingly found in silico evidence in GenBank for a 265-base long SRP RNA sequence in the ITS1 region of a total of 11 fully identified species in three ectomycorrhizal genera of the Basidiomycota (Fungi): Astraeus, Russula, and Lactarius. To rule out sequence artifacts, one specimen from a species indicated to have the SRP RNA-containing ITS region in each of these genera was ordered and re-sequenced. Sequences identical to the corresponding GenBank entries were recovered, or in the case of a non-original but conspecific specimen differed by three bases, showing that these species indeed have an SRP RNA sequence incorporated into their ITS1 region. Other than the ribosomal genes, this is the first known case of non-coding RNAs in the eukaryotic ITS region, and it may assist in the examination of other types of insertions in fungal genomes.
  •  
10.
  • Alm Rosenblad, Magnus, 1957, et al. (author)
  • Evidence for further non-coding RNA genes in the fungal rDNA region
  • 2022
  • In: MycoKeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; :90, s. 203-213
  • Journal article (peer-reviewed)abstract
    • Non-coding RNA (ncRNA) genes play important, but incompletely understood, roles in various cellular processes, notably translation and gene regulation. A recent report on the detection of the ncRNA Signal Recognition Particle gene in the nuclear ribosomal internal transcribed spacer region of several species of three genera of ectomycorrhizal basidiomycetes prompted a more thorough bioinformatics search for additional ncRNA genes in the full fungal ribosomal operon. This study reports on the detection of three ncRNA genes hitherto not known from the fungal ribosomal region: nuclear RNase P RNA, RNase MRP RNA, and a possible snoRNA U14 in a total of five species ofAuricularia and Inocybe. We verified their presence through resequencing of independent specimens. Two completedAuricularia genomes were found to lack these ncRNAs elsewhere than in the ribosomal operon, suggesting that these are functional genes. It seems clear that ncRNA genes play a larger role in fungal ribosomal genetics than hitherto thought.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 43
Type of publication
journal article (36)
conference paper (6)
doctoral thesis (1)
Type of content
peer-reviewed (36)
other academic/artistic (7)
Author/Editor
Alm Rosenblad, Magnu ... (43)
Blomberg, Anders, 19 ... (16)
Nilsson, R. Henrik, ... (6)
Lind, Ulrika (6)
Davila Lopez, Marcel ... (5)
Abarenkov, Kessy (3)
show more...
Bengtsson-Palme, Joh ... (3)
Abramova, Anna, 1990 (3)
Jonsson, Per R., 195 ... (3)
Kristiansson, Erik, ... (2)
Larsson, Ellen, 1961 (2)
Larsson, Tomas (2)
Panova, Marina, 1973 (2)
Töpel, Mats H., 1973 (2)
Sundell, Kristina, 1 ... (2)
Zhang, H. (1)
Johansson, Tomas (1)
Svensson, Ola, 1971 (1)
Wurzbacher, Christia ... (1)
Ryberg, Martin (1)
Tedersoo, Leho (1)
Aronsson, Henrik, 19 ... (1)
Sunnerhagen, Per, 19 ... (1)
Musilova, Z. (1)
Larsson, T.A. (1)
Gunnarsson, Lina-Mar ... (1)
Larsson, D. G. Joaki ... (1)
Förlin, Lars, 1950 (1)
Adrian-Kalchhauser, ... (1)
Pippel, M (1)
Winkler, S (1)
Schloissnig, S (1)
Adrian-Kalchhauser, ... (1)
Kutschera, Verena E. (1)
Pippel, Martin (1)
Winkler, Sylke (1)
Schloissnig, Siegfri ... (1)
Burkhardt-Holm, Patr ... (1)
Peart, C. R. (1)
Solbakken, M. H. (1)
Suurvali, J. (1)
Walser, J. C. (1)
Wilson, J. Y. (1)
Burguera, D. (1)
Gutnik, S. (1)
Michiels, N. (1)
Pankov, K. (1)
Walker, A (1)
Tunlid, Anders (1)
Kukkonen, Jyrki P. (1)
show less...
University
University of Gothenburg (43)
Chalmers University of Technology (5)
Uppsala University (3)
Lund University (1)
University of Borås (1)
RISE (1)
Language
English (42)
Undefined language (1)
Research subject (UKÄ/SCB)
Natural sciences (35)
Medical and Health Sciences (5)
Engineering and Technology (2)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view