SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alm Sven Erick Professor) "

Sökning: WFRF:(Alm Sven Erick Professor)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Renlund, Henrik, 1979- (författare)
  • Recursive Methods in Urn Models and First-Passage Percolation
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This PhD thesis consists of a summary and four papers which deal with stochastic approximation algorithms and first-passage percolation. Paper I deals with the a.s. limiting properties of bounded stochastic approximation algorithms in relation to the equilibrium points of the drift function. Applications are given to some generalized Pólya urn processes. Paper II continues the work of Paper I and investigates under what circumstances one gets asymptotic normality from a properly scaled algorithm. The algorithms are shown to converge in some other circumstances, although the limiting distribution is not identified. Paper III deals with the asymptotic speed of first-passage percolation on a graph called the ladder when the times associated to the edges are independent, exponentially distributed with the same intensity. Paper IV generalizes the work of Paper III in allowing more edges in the graph as well as not having all intensities equal.
  •  
4.
  • Parviainen, Robert, 1975- (författare)
  • Connectivity Properties of Archimedean and Laves Lattices
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • An Archimedean lattice is a graph of a regular tiling of the plane, such that all corners are equivalent. A tiling is regular if all tiles are regular polygons: equilateral triangles, squares, et cetera. There exist exactly 11 Archimedean lattices. Being planar graphs, the Archimedean lattices have duals, 3 of which are Archimedean, the other 8 are called Laves lattices.In the thesis, three measures of connectivity of these 19 graphs are studied: the connective constant for self-avoiding walks, and bond and site percolation critical probabilities. The connective constant measures connectivity by the number of walks in which all visited vertices are unique. The critical probabilities quantify the proportion of edges or vertices that can be removed, so that the produced subgraph has a large connected component.A common issue for these measures is that they, although intensely studied by both mathematicians and scientists from other fields, have been calculated only for very few graphs. With the goal of comparing the induced orders of the Archimedean and Laves lattices under the three measures, the thesis gives improved bounds and estimates for many graphs. A large part of the thesis focuses on the problem of deciding whether a given graph is a subgraph of another graph. This, surprisingly difficult problem, is considered for the set of Archimedean and Laves lattices, and for the set of matching Archimedean and Laves lattices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy