SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almeida Luís Associate Professor) "

Sökning: WFRF:(Almeida Luís Associate Professor)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cai, Simin (författare)
  • Systematic Design of Data Management for Real-Time Data-Intensive Applications
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Modern real-time data-intensive systems generate large amounts of data that are processed using complex data-related computations such as data aggregation. In order to maintain the consistency of data, such computations must be both logically correct (producing correct and consistent results) and temporally correct (completing before specified deadlines). One solution to ensure logical and temporal correctness is to model these computations as transactions and manage them using a Real-Time Database Management System (RTDBMS). Ideally, depending on the particular system, the transactions are customized with the desired logical and temporal correctness properties, which are achieved by the customized RTDBMS with appropriate run-time mechanisms. However, developing such a data management solution with provided guarantees is not easy, partly due to inadequate support for systematic analysis during the design. Firstly, designers do not have means to identify the characteristics of the computations, especially data aggregation, and to reason about their implications. Design flaws might not be discovered, and thus they may be propagated to the implementation. Secondly, trade-off analysis of conflicting properties, such as conflicts between transaction isolation and temporal correctness, is mainly performed ad-hoc, which increases the risk of unpredictable behavior.In this thesis, we propose a systematic approach to develop transaction-based data management with data aggregation support for real-time systems. Our approach includes the following contributions: (i) a taxonomy of data aggregation, (ii) a process for customizing transaction models and RTDBMS, and (iii) a pattern-based method of modeling transactions in the timed automata framework, which we show how to verify with respect to transaction isolation and temporal correctness. Our proposed taxonomy of data aggregation processes helps in identifying their common and variable characteristics, based on which their implications can be reasoned about. Our proposed process allows designers to derive transaction models with desired properties for the data-related computations from system requirements, and decide the appropriate run-time mechanisms for the customized RTDBMS to achieve the desired properties. To perform systematic trade-off analysis between transaction isolation and temporal correctness specifically, we propose a method to create formal models of transactions with concurrency control, based on which the isolation and temporal correctness properties can be verified by model checking, using the UPPAAL tool. By applying the proposed approach to the development of an industrial demonstrator, we validate the applicability of our approach.
  •  
2.
  • Zhou, Yuanbin, 1991- (författare)
  • Synthesis of Safety-Critical Real-Time Systems
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Modern safety-critical real-time systems are becoming more and more complex, due to sophisticated applications such as advanced driving assistance, automated driving, advanced infotainment, and applications involving machine learning and deep learning. This has led to increased requirements for the communication infrastructures. Real-time bus-based communication techniques, such as CAN and FlexRay, have been widely adopted for decades, due to their low cost and reliable communication capability. However, the bandwidth provided by these technologies is often not enough for modern safety-critical systems. Time-Sensitive Networking (TSN) is a promising technique that can handle the increasing bandwidth requirements, while meeting real-time constraints and providing Ethernet compatible solutions. We have studied the synthesis of schedules and routes for TSN, in order to fulfill timing and reliability requirements for safety-critical systems. Functional safety is an important goal for such systems, to ensure that no unreasonable risks are taken. This involves handling random and systematic faults, both of which are considered in this work. We synthesize schedules and routes for TSN so that the probability of faulty transmission due to random faults is below a certain threshold.ASIL Decomposition, introduced in the automotive industry, is applied to handle systematic faults, while achieving overall cost minimization. In order to improve schedulability, preemption support in TSN has also been studied. Heuristic algorithms are proposed for all the above contributions to address scalability issues characterized for the constrained synthesis and optimization problem addressed.Traditional designs for safety-critical systems usually deploy a federated architecture, where several processors are available and each processor implements one dedicated function. An important goal is to achieve fault containment. However, due to the increasing complexity of modern safety-critical systems, this architecture is no longer scalable. Therefore, several tasks with different criticality levels are usually integrated on the same computing platform. A key aspect for such systems is to achieve the required independence between tasks at different criticality levels and to guarantee that they do not interfere each other. We have developed a partitioned scheduling technique for mixed-criticality systems to achieve temporal independence, while minimizing the CPU usage.
  •  
3.
  • Ashjaei, Mohammad, 1980- (författare)
  • Real-Time Communication over Switched Ethernet with Resource Reservation
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Due to the need for advanced computer-controlled functionality in distributed embedded systems the requirements on network communication are becoming overly intricate. This dissertation targets the requirements that are concerned with real-time guarantees, run-time adaptation, resource utilization and flexibility during the development. The Flexible Time-Triggered Switched Ethernet (FTT-SE) and Hard Real-Time Ethernet Switching (HaRTES) network architectures have emerged as two promising solutions that can cater for these requirements. However, these architectures do not support multi-hop communication as they are originally developed for single-switch networks. This dissertation presents a fundamental contribution in multi-hop real-time communication over the FTT-SE and HaRTES architectures targeting the above mentioned requirements. It proposes and evaluates various solutions for scheduling and forwarding the traffic through multiple switches in these architectures. These solutions preserve the ability of dynamic adaptation without jeopardizing real-time properties of the architectures. Moreover, the dissertation presents schedulability analyses for the timeliness verification and evaluation of the proposed solutions as well as several protocols to support run-time adaptation in the multi-hop communication. Finally, the work led to an end-to-end resource reservation framework, based on the proposed multi-hop architectures, to support flexibility during the development of the systems. The efficiency of the proposed solutions is evaluated on various case studies that are inspired from industrial systems.
  •  
4.
  • Pop, Traian, 1975- (författare)
  • Analysis and Optimisation of Distributed Embedded Systems with Heterogeneous Scheduling Policies
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The growing amount and diversity of functions to be implemented by the current and future embedded applications (like, for example, in automotive electronics) have shown that, in many cases, time-triggered and event-triggered functions have to coexist on the computing nodes and to interact over the communication infrastructure. When time-triggered and event-triggered activities have to share the same processing node, a natural way for the execution support can be provided through a hierarchical scheduler. Similarly, when such heterogeneous applications are mapped over a distributed architecture, the communication infrastructure should allow for message exchange in both time-triggered and event-triggered manner in order to ensure a straightforward interconnection of heterogeneous components.This thesis studies aspects related to the analysis and design optimisation for safety-critical hard real-time applications running on hierarchically scheduled distributed embedded systems. It first provides the basis for the timing analysis of the activities in such a system, by carefully taking into consideration all the interferences that appear at run-time between the processes executed according to different scheduling policies. Moreover, due to the distributed nature of the architecture, message delays are also taken into consideration during the timing analysis. Once the schedulability analysis has been provided, the entire system can be optimised by adjusting its configuration parameters. In our work, the entire optimisation process is directed by the results from the timing analysis, with the goal that in the end the timing constraints of the application are satisfied. The analysis and design methodology proposed in the first part of the thesis is applied next on the particular category of distributed systems that use FlexRay as a communication protocol. We start by providing a schedulability analysis for messages transmitted over a FlexRay bus, and then by proposing a bus access optimisation algorithm that aims at improving the timing properties of the entire system.For all the problems that we investigated, we have carried out extensive experiments in order to measure the efficiency of the proposed solutions. The results have confirmed both the importance of the addressed aspects during system-level design, and the applicability of our techniques for analysing and optimising the studied systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy