SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almroth Rosell E.) "

Sökning: WFRF:(Almroth Rosell E.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wahlstrom, I., et al. (författare)
  • Projected climate change impact on a coastal sea-As significant as all current pressures combined
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:17, s. 5310-5319
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change influences the ocean's physical and biogeochemical conditions, causing additional pressures on marine environments and ecosystems, now and in the future. Such changes occur in environments that already today suffer under pressures from, for example, eutrophication, pollution, shipping, and more. We demonstrate how to implement climate change into regional marine spatial planning by introducing data of future temperature, salinity, and sea ice cover from regional ocean climate model projections to an existing cumulative impact model. This makes it possible to assess climate change impact in relation to pre-existing cumulative impact from current human activities. Results indicate that end-of-century projected climate change alone is a threat of the same magnitude as the combination of all current pressures to the marine environment. These findings give marine planners and policymakers forewarning on how future climate change may impact marine ecosystems, across space, emission scenarios, and in relation to other pressures.
  •  
2.
  • Almroth Rosell, Elin, 1977, et al. (författare)
  • A new approach to model oxygen dependent benthic phosphate fluxes in the Baltic Sea
  • 2015
  • Ingår i: Journal of Marine Systems. - : Elsevier BV. - 0924-7963 .- 1879-1573. ; 144, s. 127-141
  • Tidskriftsartikel (refereegranskat)abstract
    • The new approach to model the oxygen dependent phosphate release by implementing formulations of the oxygen penetration depths (OPD) and mineral bound inorganic phosphorus pools to the Swedish Coastal and Ocean Biogeochemical model (SCOBI) is described. The phosphorus dynamics and the oxygen concentrations in the Baltic proper sediment are studied during the period 1980-2008 using SCOBI coupled to the 3D-Rossby Centre Ocean model. Model data are compared to observations from monitoring stations and experiments. The impact from oxygen consumption on the determination of the OPD is found to be largest in the coastal zones where also the largest OPD are found. In the deep water the low oxygen concentrations mainly determine the OPD. Highest modelled release rate of phosphate from the sediment is about 59 x 10(3) t P year(-1) and is found on anoxic sediment at depths between 60-150 m, corresponding to 17% of the Baltic proper total area. The deposition of organic and inorganic phosphorus on sediments with oxic bottom water is larger than the release of phosphorus, about 43 x 10(3) t P year(-1). For anoxic bottoms the release of total phosphorus during the investigated period is larger than the deposition, about 19 x 10(3) t P year(-1). In total the net Baltic proper sediment sink is about 23.7 x 10(3) t P year(-1). The estimated phosphorus sink efficiency of the entire Baltic Sea is on average about 83% during the period.
  •  
3.
  • Almroth Rosell, Elin, 1977, et al. (författare)
  • Transport of fresh and resuspended particulate organic material in the Baltic Sea — a model study
  • 2011
  • Ingår i: Journal of Marine Systems. - : Elsevier BV. - 0924-7963. ; 87:1, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • A fully coupled high-resolution 3-dimensional biogeochemical–physical ocean model including an empirical wave model was used to investigate the long-term average (1970–2007) distributions and transports of resuspended matter and other types of suspended organic matter in the Baltic Sea. Modelled bottom types were compared to observations and the results showed that the model successfully managed to capture the horizontal, as well as the vertical, distribution of the different bottom types: accumulation, transport and erosion bottoms. The model also captured well the nutrient element contents in the sediments. On average the largest contribution of resuspended organic carbon to the transport of total organic carbon is found at erosion and transport bottoms. Although the relative transport of resuspended organic carbon at deeper accumulation bottoms in general is low (< 10% of total), the central parts of the sub-basins act on average as sinks that import organic matter while the more shallow areas and the coastal regions acts as sources of organic carbon in the water column. This indicates that the particulate organic matter produced in erosion and transport areas might be kept in suspension long enough to be transported and settle in less energetic areas, i.e. on accumulation bottoms.
  •  
4.
  • Cathalot, C., et al. (författare)
  • Spatial and Temporal Variability of Benthic Respiration in a Scottish Sea Loch Impacted by Fish Farming: A Combination of In Situ Techniques
  • 2012
  • Ingår i: Aquatic geochemistry. - : Springer Science and Business Media LLC. - 1380-6165 .- 1573-1421. ; 18:6, s. 515-541
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of fish farm activities on sediment biogeochemistry were investigated in Loch Creran (Western Scotland) from March to October 2006. Sediment oxygen uptake rates (SOU) were estimated along an organic matter gradient generated from an Atlantic salmon farm using a combination of in situ techniques: microelectrodes, planar optode and benthic chamber incubations. Sulphide (H2S) and pH distributions in sediment porewater were also measured using in situ microelectrodes, and dissolved inorganic carbon (DIC) fluxes were measured in situ using benthic chambers. Relationships between benthic fluxes, vertical distribution of oxidants and reduced compounds in the sediment were examined as well as bacterial abundance and biomass. Seasonal variations in SOU were relatively low and mainly driven by seasonal temperature variations. The effect of the fish farm on sediment oxygen uptake rate was clearly identified by higher total and diffusive oxygen uptake rates (TOU and DOU, respectively) on impacted stations (TOU: 70 ± 25 mmol O2 m-2 day-1; DOU: 70 ± 32 mmol O2 m-2 day-1 recalculated at the summer temperature), compared with the reference station (TOU: 28.3 ± 5.5 mmol O2 m-2 day-1; DOU: 21.5 ± 4.5 mmol O2 m-2 day-1). At the impacted stations, planar optode images displayed high centimetre scale heterogeneity in oxygen distribution underlining the control of oxygen dynamics by small-scale processes. The organic carbon enrichment led to enhanced sulphate reduction as demonstrated by large vertical H2S concentration gradients in the porewater (from 0 to 1,000 lM in the top 3 cm) at the most impacted site. The impact on ecosystem functions such as bioirrigation was evidenced by a decreasing TOU/DOU ratio, from 1.7 in the non-impacted sediments to 1 in the impacted zone. This trend was related to a shift in the macrofaunal assemblage and an increase in sediment bacterial population. The turnover time of the organic load of the sediment was estimated to be over 6 years.
  •  
5.
  • Eilola, Kari, et al. (författare)
  • Impact of saltwater inflows on phosphorus cycling and eutrophication in the Baltic Sea : a 3D model study
  • 2014
  • Ingår i: Tellus. Series A, Dynamic meteorology and oceanography. - : Stockholm University Press. - 0280-6495 .- 1600-0870. ; 66, s. 23985-
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of dense saltwater inflows on the phosphorus dynamics in the Baltic Sea is studied from tracer experiments with a three-dimensional physical model. Model simulations showed that the coasts of the North West Gotland Basin and the Gulf of Finland, the Estonian coast in the East Gotland Basin are regions where tracers from below the halocline are primarily lifted up above the halocline. After 1 yr tracers are accumulated at the surface along the Swedish east coast and at the western and southern sides of Gotland. Elevated concentrations are also found east and southeast of Gotland, in the northern Bornholm Basin and in the central parts of the East Gotland Basin. The annual supplies of phosphorus from the deeper waters to the productive surface layers are estimated to be of the same order of magnitude as the waterborne inputs of phosphorus to the entire Baltic Sea. The model results suggest that regionally the impact of these nutrients may be quite large, and the largest regional increases in surface concentrations are found after large inflows. However, the overall direct impact of major Baltic inflows on the annual uplift of nutrients from below the halocline to the surface waters is small because vertical transports are comparably large also during periods without major inflows. Our model results suggest that phosphorus released from the sediments between 60 and 100 m depth in the East Gotland Basin contributes to the eutrophication, especially in the coastal regions of the eastern Baltic Proper.
  •  
6.
  • Jonsson, Per R., 1957, et al. (författare)
  • Combining seascape connectivity with cumulative impact assessment in support of ecosystem-based marine spatial planning
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Cumulative impact assessment (CIA) is a promising approach to guide marine spatial planning (MSP) and management. One limitation of CIA is the neglect of seascape connectivity, which may spread the impact of localized pressures to ambient areas, e.g. through lost dispersal and recruitment of organisms. We here, for the first time, incorporate seascape connectivity into a traditional CIA model using a connectivity matrix, exemplified by dispersal of propagules estimated through biophysical modelling. Two connectivity impacts are identified: the source impact represents downstream areas losing recruits because of reduced larval dispersal from sites affected by the pressure, and the sink impact represents loss of recruits originating from upstream areas prevented from settlement in the site affected by the local pressure. By including seascape connectivity in the Swedish MSP-guiding CIA tool Symphony we demonstrate how to practically account for remote effects of local environmental impact. Our example on blue mussel shows how reducing mussel fitness in a given area may have impacts on mussels far from the acting pressures. Overall, results indicate that connectivity impact for blue mussels plays a minor role in most areas, <10% of the ordinary cumulative impact. However, in some smaller areas, e.g. on offshore banks and the Danish Straits, seascape connectivity may increase ordinary cumulative impact with 20%-30%. In an example of scenario-based CIA analyses of MSP projections, we demonstrate how impacts of particular management actions, e.g. shipping rerouting and wind power developments, can be tracked far from the original area of influence. Depending on the dispersal ability of ecosystem components, a local pressure may impact a considerable area through seascape connectivity, transgressing management units and national borders. Although the mean connectivity impact may be modest for a single ecosystem component, the consideration of seascape connectivity across multiple ecosystem components may significantly alter the mapping of cumulative impact and the assessment of different MSP scenarios. Synthesis and applications. Our extension of Cumulative Impact Assessment offers a new method for mapping and practically integrating seascape connectivity with ecosystem-based MSP and other spatial instruments for policy making, such as marine protected areas.
  •  
7.
  • Nilsson, Madeleine, et al. (författare)
  • Organic carbon recycling in Baltic Sea sediments – An integrated estimate on the system scale based on in situ measurements
  • 2019
  • Ingår i: Marine Chemistry. - : Elsevier BV. - 0304-4203. ; 209, s. 81-93
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ measured benthic fluxes of dissolved inorganic carbon (DIC), a proxy for organic carbon (OC) oxidation or recycling rates, are used together with burial rates based on measured sediment accumulation rates (SAR) and vertical distribution of OC in the sediment solid phase to construct a benthic OC budget for the Baltic Sea system. The large variability in recycling rates (4.3 ± 0.87–33 ± 17 mmol C m−2 d−1) and burial rates (1.2 ± 0.8–5.9 ± 1.8 mmol C m−2 d−1) between different sub-basins and between different depositional areas within the basins is accounted for in the budget. Our results indicate that sediments in the Baltic Sea have much higher recycling rates and lower burial rates of OC than previously found. The sediment budget calculations show that 22 ± 7.8 Tg C yr−1 of OC is recycled to the water column due to organic matter oxidation, while long term burial amounts to 1.0 ± 0.3 Tg C yr−1. For the Baltic Sea as a whole, 96% of the particulate OC (POC) deposited on the sea floor (23 ± 7.8 Tg C yr−1; the sum of recycling and burial) is recycled back to the water column. However, the burial efficiency (i.e. the fraction buried of the total deposition) shows large variability between the different basins (2.5–16%). The total benthic POC deposition is approximately 20% higher than the estimated POC source originating from primary production in the water column and riverine input. This difference is likely within the uncertainty range of our budget calculations, however it indicates that the POC sources might be underestimated. The results from this study enhance the understanding of OC delivery, deposition and cycling in the Baltic Sea, and help improving existing Baltic OC budgets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy