SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almuktar Suhad A.A.A.N.) "

Sökning: WFRF:(Almuktar Suhad A.A.A.N.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abd Ali, Ziad T., et al. (författare)
  • Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust
  • 2020
  • Ingår i: Journal of Water Process Engineering. - : Elsevier BV. - 2214-7144. ; 33
  • Tidskriftsartikel (refereegranskat)abstract
    • The experimental methodology achieved in the present study signified that the adsorption and precipitation were main mechanisms occurred together in the removal of nickel from aqueous solution by sorption using cement kiln dust (CKD) byproduct as sorbent. Finding the contribution of each mechanism in the removal process and derivation an analytical model for finding the portion of precipitation were the focal points of this work. Results proved that pure precipitation was increased with the increase of CKD dosage and metal concentration where total removal (adsorption-precipitation) ranged from 45 to 100%. The SEM micrographs of the CKD sorbent before and after sorption process certified that there was crystal precipitates on the surface of the CKD. Also, these graphs in combination with FT-IR tests proved that [Ni(OH2)n]+2 (n=4-6) species were bonded with CKD and insoluble hydroxide species may be precipitated onto the CaO surfaces by co-precipitation, while K–O, Si-O and Ca-O groups enhanced the adsorption mechanism.
  •  
2.
  • Almuktar, Suhad A.A.A.N., et al. (författare)
  • Assessment of capsicum annuum l. Grown in controlled and semi-controlled environments irrigated with greywater treated by floating wetland systems
  • 2021
  • Ingår i: agronomy. - : MDPI AG. - 2073-4395. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulation of trace elements, including heavy metals, were evaluated in soil and fruits of chilli plants (Capsicum annuum L.) grown under both laboratory-controlled and semi-controlled greenhouse location conditions. Chilli plant biomass growth in different development stages and fruit productivity were evaluated and compared with each other for the impact of growth boundary conditions and water quality effects. Treated synthetic greywaters by different operational design set-ups of floating treatment wetland systems were recycled for watering chillies in both locations. Effluents of each individual group of treatment set-up systems were labelled to feed sets of three replicates of chilli plants in both locations. Results revealed that the treated synthetic greywater (SGW) complied with thresholds for irrigation water, except for high concentrations (HC) of phosphates, total suspended soils, and some trace elements, such as cadmium. Chilli plants grew in both locations with different growth patterns in each development stage. First blooming and high counts of flowers were observed in the laboratory. Higher fruit production was noted for greenhouse plants: 2266 chilli fruits with a total weight of 16.824 kg with an expected market value of GBP 176.22 compared to 858 chilli fruits from the laboratory with a weight of 3.869 kg and an estimated price of GBP 17.61. However, trace element concentrations were detected in chilli fruits with the ranking order of occurrence as: Mg > Ca > Na > Fe > Zn > Al > Mn > Cu > Cd > Cr > Ni > B. The highest concentrations of accumulated Cd (3.82 mg/kg), Cu (0.56 mg/kg), and Na (0.56 mg/kg) were recorded in chilli fruits from the laboratory, while greater accumulations of Ca, Cd, Cu, Mn, and Ni with concentrations of 4.73, 1.30, 0.20, 0.21, and 0.24 mg/kg, respectively, were linked to fruits from the greenhouse. Trace elements in chilli plant soils followed the trend: Mg > Fe > Al > Cr > Mn > Cd > Cu > B. The accumulated concentrations in either chilli fruits or the soil were above the maximum permissible thresholds, indicating the need for water quality improvements.
  •  
3.
  • Almuktar, Suhad A.A.A.N., et al. (författare)
  • Contaminations of soil and two capsicum annuum generations irrigated by reused urban wastewater treated by different reed beds
  • 2018
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1661-7827 .- 1660-4601. ; 15:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In order to save potable water, this study aims to evaluate the contamination of soil and Capsicum annuum L. (chilli) watered with urban wastewater (sewage) pre-treated by various wetland systems. Methods: The appropriateness of wetland outflow for irrigation when applying reused wastewater with high contamination of minerals and pathogens was assessed. The impact of wastewaters pre-treated by various wetlands on soil and harvest was tested in terms of mineral and biological contamination risk. Results: The wetlands met the standards for irrigation water for most water quality variables. However, the thresholds for key water quality parameters were significantly (p < 0.05) exceeded. The highest values for total coliforms, ammonium-nitrogen, phosphorus and potassium were 157,072 CFU/100 mL, 8.5 mg/L, 5.0 mg/L, and 7.0 mg/L, respectively. The harvest was moderately polluted only by zinc according to vegetable quality standards (threshold of 50 mg/kg). Zinc concentrations for Filters 2, 4, 6, 7 and 8 were 35.8, 60.6, 65.1, 65.5 and 53.2 mg/kg, respectively. No bacterial contamination was detected. Conclusions: Treatment of domestic wastewater applying constructed wetlands and subsequent recycling of the treated wastewater for irrigation of crops is a good substitute to the traditional application of drinking water for irrigation purposes.
  •  
4.
  • Almuktar, Suhad A.A.A.N., et al. (författare)
  • Recycling of domestic wastewater treated by vertical-flow wetlands for irrigation of two consecutive Capsicum annuum generations
  • 2017
  • Ingår i: Ecological Engineering. - : Elsevier BV. - 0925-8574. ; 107, s. 82-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to water scarcity, there is great interest in reusing various nutrient-rich wastewaters. The aim of this article is consequently to evaluate if domestic wastewater treated by various wetland systems can be successfully recycled to irrigate generations of commercial crops such as Chilli (Capsicum annuum) grown in compost within a laboratory environment to obtain a cultivar adapted to domestic wastewater. The corresponding objectives were to assess the irrigation water for long-term growth when applying recycled wastewater, the impact of various wastewaters subject to the wetland characteristics, the impact of treated wastewater volume for irrigation, and the economic return of different experimental set-ups in terms of marketable yields. The vertical-flow wetlands treated domestic wastewater well, meeting the irrigation water quality standards for most water quality parameters, except for phosphorus (4.2 ± 0.48 mg/l), ammonia-nitrogen (4.2 ± 2.64 mg/l), potassium (7.0 ± 3.03 mg/l) and total coliforms (69647 ± 64852.6 CFU/100 ml), which showed high values significantly (p < 0.05) exceeding common thresholds set for irrigation applications of 2 mg/l, 5 mg/l, 2 mg/l, and 1000 CFU/100 ml. Chilli generations were grown successfully when applying wastewater treated by wetlands and organic soil. High Chilli generation yields concerning economic return were linked with wetlands containing small aggregates with long contact and resting times and fed with a high inflow loading rate (undiluted wastewater), releasing more nutrients into their effluent producing the best fruit quality with respect to weight, length and width resulting in a greater marketable profit of about 46% compared with the others. First generation Chilli plants were grown with considerably shorter heights and produced abundant fruit numbers, which were harvested earlier than their mothers due to the reduction (approximately 55%) of irrigation water volume used for them compared to their mothers. However, excessive nutrients applied on mother plants via irrigation water resulted in better fruit quality regarding dimensions and weights compared with their corresponding first generation plants, leading to a greater marketable profit by about 25%.
  •  
5.
  • Almuktar, Suhad A.A.A.N., et al. (författare)
  • Wetlands for wastewater treatment and subsequent recycling of treated effluent : a review
  • 2018
  • Ingår i: Environmental Science and Pollution Research. - : Springer Science and Business Media LLC. - 0944-1344 .- 1614-7499. ; 25:24, s. 23595-23623
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to water scarcity challenges around the world, it is essential to think about non-conventional water resources to address the increased demand in clean freshwater. Environmental and public health problems may result from insufficient provision of sanitation and wastewater disposal facilities. Because of this, wastewater treatment and recycling methods will be vital to provide sufficient freshwater in the coming decades, since water resources are limited and more than 70% of water are consumed for irrigation purposes. Therefore, the application of treated wastewater for agricultural irrigation has much potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for plant production. Among the current treatment technologies applied in urban wastewater reuse for irrigation, wetlands were concluded to be the one of the most suitable ones in terms of pollutant removal and have advantages due to both low maintenance costs and required energy. Wetland behavior and efficiency concerning wastewater treatment is mainly linked to macrophyte composition, substrate, hydrology, surface loading rate, influent feeding mode, microorganism availability, and temperature. Constructed wetlands are very effective in removing organics and suspended solids, whereas the removal of nitrogen is relatively low, but could be improved by using a combination of various types of constructed wetlands meeting the irrigation reuse standards. The removal of phosphorus is usually low, unless special media with high sorption capacity are used. Pathogen removal from wetland effluent to meet irrigation reuse standards is a challenge unless supplementary lagoons or hybrid wetland systems are used.
  •  
6.
  • Salimi, Shokoufeh, et al. (författare)
  • Impact of climate change on wetland ecosystems : A critical review of experimental wetlands
  • 2021
  • Ingår i: Journal of Environmental Management. - : Elsevier BV. - 0301-4797. ; 286
  • Forskningsöversikt (refereegranskat)abstract
    • Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy