SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alsberg Tomas E) "

Sökning: WFRF:(Alsberg Tomas E)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ekström, Sanna, et al. (författare)
  • A possible role of ground-based microorganisms on cloud formation in the atmosphere
  • 2010
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 7:1, s. 387-394
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of clouds is an important process for the atmosphere, the hydrological cycle, and climate, but some aspects of it are not completely understood. In this work, we show that microorganisms might affect cloud formation without leaving the Earth’s surface by releasing biological surfactants (or biosurfactants) in the environment, that make their way into atmospheric aerosols and could significantly enhance their activation into cloud droplets. In the first part of this work, the cloud-nucleating efficiency of standard biosurfactants was characterized and found to be better than that of any aerosol material studied so far, including inorganic salts. These results identify molecular structures that give organic compounds exceptional cloud-nucleating properties. In the second part, atmospheric aerosols were sampled at different locations: a temperate coastal site, a marine site, a temperate forest, and a tropical forest. Their surface tension was measured and found to be below 30 mN/m, the lowest reported for aerosols, to our knowledge. This very low surface tension was attributed to the presence of biosurfactants, the only natural substances able to reach to such low values. The presence of strong microbial surfactants in aerosols would be consistent with the organic fractions of exceptional cloud-nucleating efficiency recently found in aerosols, and with the correlations between algae bloom and cloud cover reported in the Southern Ocean. The results of this work also suggest that biosurfactants might be common in aerosols and thus of global relevance. If this is confirmed, a new role for microorganisms on the atmosphere and climate could be identified.
  •  
2.
  • Ekström, Sanna, et al. (författare)
  • Of Bacteria and clouds: when microbial substances trigger cloud formation in Earth’s atmosphere
  • 2008
  • Ingår i: American Geophysical Union Fall Meeting 2008.
  • Konferensbidrag (refereegranskat)abstract
    • This presentation reports the discovery that substances produced by microorganisms might trigger the formation of cloud in the atmosphere, at least under certain conditions.The Cloud Condensation Nuclei (CCN) efficiency of substances produced by microorganisms (bacteria, fungi, micro-algae …) that are common at Earth’s surface and in the oceans were studied. Their Köhler curves were determined experimentally by surface tension and osmometry measurements and found to have much lower critical supersaturations than any material studied so far, including inorganic salts.The presence of these substances was evidenced in aerosols from four different origins (coastal, marine, temperate forest, and Amazonian forest) by LC/MS/MS analyses and by their unique signature on the surface tension. These substances lowered the surface tension of the aerosols below 40 mN/m, allowing them to be activated into cloud droplets before inorganic particles.Microorganisms would thus be able to control cloud formation in Earth’s atmosphere under certain conditions. This would explain many previous observations such as correlations between algae bloom and cloud cover. Most importantly, this work identifies a potentially important component of Earth’s hydrological cycle and a new direct link between biosphere and climate.
  •  
3.
  • Magnér, Jörgen A, et al. (författare)
  • Evaluation of poly(ethylene-co-vinyl acetate-co-carbon monoxide) and polydimethylsiloxane for equilibrium sampling of polar organic contaminants in water.
  • 2009
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 28:9, s. 1874-80
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study was to develop a passive absorptive equilibrium sampler that would enable the determination of the concentrations of polar organic compound (POC) in water more efficiently than existing techniques. To this end, a novel plastic material, poly(ethylene-co-vinyl acetate-co-carbon monoxide) (PEVAC), was evaluated and the results were compared with an existing silicone-based passive absorptive equilibrium device. Seven compounds (imidacloprid, carbendazim, metoprolol, atrazin, carbamazepine, diazinon, and chlorpyrifos), a mixture of pharmaceuticals, and pesticides with a logarithmic octanol-water partition coefficient ranging from 0.2 to 4.77 were selected as model substances for the experiments. The results showed that six of the seven selected POCs reached distribution equilibrium within 4 d in the two materials tested. A linear relation with a regression coefficient of more than 0.8906 between the established logarithmic absorbent-water partition coefficient and the calculated logarithmic dissociation partition coefficient of the selected compounds in the two polymers was observed. The correlation between these two coefficients was within one order of magnitude for the compounds that reached equilibrium in the two polymers, which demonstrates that both materials are suitable for mimicking biological uptake of POCs. The PEVAC material showed an enhanced sorption for all selected compounds compared to the silicone material and up to five times higher enrichment for the most polar compound. Fluorescence analysis of the sampler cross-section, following the uptake of fluoranthene, and proof that the sorption was independent of surface area variations demonstrated that the PEVAC polymer possessed absorptive rather than adsorptive enrichment of organic compounds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy