SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alsehli Ahmed M.) "

Sökning: WFRF:(Alsehli Ahmed M.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Williams, Michael J., et al. (författare)
  • The Statin Target Hmgcr Regulates Energy Metabolism and Food Intake through Central Mechanisms
  • 2022
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The statin drug target, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), is strongly linked to body mass index (BMI), yet how HMGCR influences BMI is not understood. In mammals, studies of peripheral HMGCR have not clearly identified a role in BMI maintenance and, despite considerable central nervous system expression, a function for central HMGCR has not been determined. Similar to mammals, Hmgcr is highly expressed in the Drosophila melanogaster brain. Therefore, genetic and pharmacological studies were performed to identify how central Hmgcr regulates Drosophila energy metabolism and feeding behavior. We found that inhibiting Hmgcr, in insulin-producing cells of the Drosophila pars intercerebralis (PI), the fly hypothalamic equivalent, significantly reduces the expression of insulin-like peptides, severely decreasing insulin signaling. In fact, reducing Hmgcr expression throughout development causes decreased body size, increased lipid storage, hyperglycemia, and hyperphagia. Furthermore, the Hmgcr induced hyperphagia phenotype requires a conserved insulin-regulated alpha-glucosidase, target of brain insulin (tobi). In rats and mice, acute inhibition of hypothalamic Hmgcr activity stimulates food intake. This study presents evidence of how central Hmgcr regulation of metabolism and food intake could influence BMI.
  •  
2.
  • Al-Sabri, Mohamed H., et al. (författare)
  • Fluvastatin-induced myofibrillar damage is associated with elevated ROS, and impaired fatty acid oxidation, and is preceded by mitochondrial morphological changes
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Previously, we showed that fluvastatin treatment induces myofibrillar damage and mitochondrial phenotypes in the skeletal muscles of Drosophila. However, the sequential occurrence of mitochondrial phenotypes and myofibril damage remains elusive. To address this, we treated flies with fluvastatin for two and five days and examined their thorax flight muscles using confocal microscopy. In the two-day fluvastatin group, compared to the control, thorax flight muscles exhibited mitochondrial morphological changes, including fragmentation, rounding up and reduced content, while myofibrils remained organized in parallel. In the five-day fluvastatin treatment, not only did mitochondrial morphological changes become more pronounced, but myofibrils became severely disorganized with significantly increased thickness and spacing, along with myofilament abnormalities, suggesting myofibril damage. These findings suggest that fluvastatin-induced mitochondrial changes precede myofibril damage. Moreover, in the five-day fluvastatin group, the mitochondria demonstrated elevated H2O2 and impaired fatty acid oxidation compared to the control group, indicating potential mitochondrial dysfunction. Surprisingly, knocking down Hmgcr (Drosophila homolog of HMGCR) showed normal mitochondrial respiration in all parameters compared to controls or five-day fluvastatin treatment, which suggests that fluvastatin-induced mitochondrial dysfunction might be independent of Hmgcr inhibition. These results provide insights into the sequential occurrence of mitochondria and myofibril damage in statin-induced myopathy for future studies.
  •  
3.
  • Al-Sabri, Mohamed H., et al. (författare)
  • Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy : Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes
  • 2022
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 11:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, C1C-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle C1C-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored C1C-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered C1C-a expression. Taken together, these results may indicate the potential role of C1C-a inhibition in statinassociated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.
  •  
4.
  • Alsehli, Ahmed M., et al. (författare)
  • Differential associations of statin treatment and polymorphism in genes coding for HMGCR and PCSK9 to risk for insomnia
  • 2021
  • Ingår i: Frontiers in Bioscience-Landmark. - : Frontiers Media S.A.. - 2768-6701 .- 2768-6698. ; 26:12, s. 1453-1463
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Statins have been linked to an increased risk for insomnia, but the literature is controversial. Moreover, it is unknown, if the potential effects are directly related to the inhibition of the statin target HMGCR, the subsequently lowered cholesterol levels, or other off-target effects of statins. Aims: To investigate the association of statin treatment and genetic proxies of cholesterol lowering drugs with the risk for insomnia and chronotype in a large population-based cohort. Methods: A cross-sectional cohort study based on baseline data collected between 2006–2010 in UK biobank cohort was conducted. European participants without any history of psychiatric/neurological disorders or of stroke and with available genetic data as well as information on statin use were included in the present study. Self-reported measures of insomnia and chronotype were analysed (a) in statin users versus control subjects, (b) subjects carrying single nucleotide polymorphisms (SNPs) in the HMGCR gene, which are associated with reduced enzymatic function and lower cholesterol levels (rs17238484 and rs12916) and (c) subjects carrying a SNP in the PCSK9 gene (rs1159147), which leads to lower cholesterol levels independent of HMGCR. The main analysis were performed using multivariable regression models. Statin treatment and SNPs in HMGCR and PCSK9 genes were used as exposures and main outcomes were insomnia and chronotype. Results: A total of 206,801participants (mean [SD] age, 57.5 [7.9] years; 56% women; 20% statin users) were included in the present study. Statin users had an increased risk of insomnia compared to controls (odds ratio [95% CI], 1.07 [1.03 to 1.11]; p = 1.42 × 10−4). A similar effect was observed for PCSK9 rs11591147-T allele (1.07 [1.01–1.14]; 0.014), while the two gene variants of HMGCR were associated with a reduced risk for insomnia (rs17238484-G: 0.97 [0.95 to 0.99]; 0.014 and rs12916-T: 0.97 [0.96 to 0.99]; 0.002). In regard to chronotype, there was no effect of either statin treatment or HMGCR SNPs, but the PCSK9 rs11591147-T allele was associated with a higher evening preference (1.17 [1.06 to 1.29]; 0.001). Conclusion: Our data suggests that statin treatment can pose an increased risk for insomnia in in the European population. Interestingly, there was no agreement between the effects of statins and the effects of reduced HMGCR activity based on genetic variants, suggesting that the observed unfavourable effect of statins on sleep is conveyed through other targets. This further explains why the literature on statin effects on sleep is not conclusive. Finally our data encourage further investigations into the molecular processes linking statins, HMGCR and PCSK9 to sleep behaviour.
  •  
5.
  • Alsehli, Ahmed M., et al. (författare)
  • The Cognitive Effects of Statins are Modified by Age
  • 2020
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To reveal new insights into statin cognitive effects, we performed an observational study on a population-based sample of 245,731 control and 55,114 statin-taking individuals from the UK Biobank. Cognitive performance in terms of reaction time, working memory and fluid intelligence was analysed at baseline and two follow-ups (within 5-10 years). Subjects were classified depending on age (up to 65 and over 65 years) and treatment duration (1-4 years, 5-10 years and over 10 years). Data were adjusted for health- and cognition-related covariates. Subjects generally improved in test performance with repeated assessment and middle-aged persons performed better than older persons. The effect of statin use differed considerably between the two age groups, with a beneficial effect on reaction time in older persons and fluid intelligence in both age groups, and a negative effect on working memory in younger subjects. Our analysis suggests a modulatory impact of age on the cognitive side effects of statins, revealing a possible reason for profoundly inconsistent findings on statin-related cognitive effects in the literature. The study highlights the importance of characterising modifiers of statin effects to improve knowledge and shape guidelines for clinicians when prescribing statins and evaluating their side effects in patients.
  •  
6.
  • Alsehli, Ahmed M., et al. (författare)
  • The Statin Target HMG-Coenzyme a Reductase (Hmgcr) Regulates Sleep Homeostasis in Drosophila
  • 2022
  • Ingår i: Pharmaceuticals. - : MDPI AG. - 1424-8247. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Statins, HMG Coenzyme A Reductase (HMGCR) inhibitors, are a first-line therapy, used to reduce hypercholesterolemia and the risk for cardiovascular events. While sleep disturbances are recognized as a side-effect of statin treatment, the impact of statins on sleep is under debate. Using Drosophila, we discovered a novel role for Hmgcr in sleep modulation. Loss of pan-neuronal Hmgcr expression affects fly sleep behavior, causing a decrease in sleep latency and an increase in sleep episode duration. We localized the pars intercerebralis (PI), equivalent to the mammalian hypothalamus, as the region within the fly brain requiring Hmgcr activity for proper sleep maintenance. Lack of Hmgcr expression in the PI insulin-producing cells recapitulates the sleep effects of pan-neuronal Hmgcr knockdown. Conversely, loss of Hmgcr in a different PI subpopulation, the corticotropin releasing factor (CRF) homologue-expressing neurons (DH44 neurons), increases sleep latency and decreases sleep duration. The requirement for Hmgcr activity in different neurons signifies its importance in sleep regulation. Interestingly, loss of Hmgcr in the PI does not affect circadian rhythm, suggesting that Hmgcr regulates sleep by pathways distinct from the circadian clock. Taken together, these findings suggest that Hmgcr activity in the PI is essential for proper sleep homeostasis in flies.
  •  
7.
  •  
8.
  • Gentreau, Mélissa, et al. (författare)
  • The effects of statins on cognitive performance are mediated by low-density lipoprotein, C-reactive protein and blood glucose concentrations.
  • 2023
  • Ingår i: The journals of gerontology. Series A, Biological sciences and medical sciences. - 1079-5006 .- 1758-535X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Statins are widely used for cardiovascular disease prevention but their effects on cognition remain unclear. Statins reduce cholesterol concentration and have been suggested to provide both beneficial and detrimental effects. Our aim was to investigate the cross-sectional and longitudinal association between statin use and cognitive performance, and whether blood low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, glucose, C-Reactive Protein (CRP), and vitamin D biomarkers mediated this association. We used participants from the UK biobank aged 40 to 69 without neurological and psychiatric disorders (n = 147,502 and n = 24,355, respectively). We performed linear regression to evaluate the association between statin use and cognitive performance and, mediation analysis to quantify the total, direct, indirect effects and the proportion meditated by blood biomarkers. Statin use was associated with lower cognitive performance at baseline (β = -0.40 [-0.53, -0.28], P = <.0001) and this association was mediated by LDL (Proportion mediated = 51.4%, P = 0.002), CRP (Proportion mediated = -11%, P = 0.006) and blood glucose (Proportion mediated = 2.6%, P = 0.018) concentrations. However, statin use was not associated with cognitive performance, measured 8 years later (β = -0.003 [-0.11, 0.10], P = 0.96). Our findings suggest that statins are associated with lower short-term cognitive performance by lowering LDL and raising blood glucose concentrations, and better performance by lowering CRP concentrations. In contrast, statins have no effect on long-term cognition and remain beneficial in reducing cardiovascular risk factors.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (8)
annan publikation (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Alsehli, Ahmed M. (9)
Schiöth, Helgi B. (8)
Williams, Michael J. (7)
Al-Sabri, Mohamed H. (5)
Clemensson, Laura Em ... (5)
Rukh, Gull (3)
visa fler...
Liao, Sifang (3)
Eriksson, Anders (2)
Mwinyi, Jessica (2)
Moulin, Thiago (2)
Miguet, Maud (2)
Fredriksson, Robert (2)
Boukhatmi, Hadi (2)
Behare, Neha (2)
Clemensson, Laura E. (2)
Gentreau, Mélissa (2)
Khan, Zaid (2)
Isgrove, Kiriana (2)
Thelander, Lina (2)
Ambrosi, Valerie (2)
Ciuculete, Diana-Mar ... (1)
Rask-Andersen, Mathi ... (1)
Tan, Xiao (1)
Ammar, Nourhane (1)
Korzh, Stanislava (1)
Hosseini, Kimia (1)
Berkins, Samuel (1)
Arora, Aadeya (1)
Antoniou, Eirini (1)
Moysiadou, Eleni I. (1)
Anantha-Krishnan, So ... (1)
Cosmen, Patricia D. (1)
Vikner, Johanna (1)
Moulin, Thiago C. (1)
Ammar, Nourhene (1)
Olszewski, Pawel K. (1)
Al-Sabri, Mohamed (1)
Vasionis, Lukas (1)
Purohit, Archana (1)
Clemensson, Laura (1)
Schiöth, Helgi (1)
Benedict, Christian, ... (1)
Olivo, Gaia, MD, 198 ... (1)
Lagunas-Rangel, Fran ... (1)
Blunder, Martina (1)
Titova, Olga E (1)
Olszewski, Paweł (1)
Titova, Olga (1)
Itskov, Pavel M. (1)
Gartner, Sarah N. (1)
visa färre...
Lärosäte
Uppsala universitet (9)
Lunds universitet (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (6)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy