SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alsiö Johan) "

Sökning: WFRF:(Alsiö Johan)

  • Resultat 1-10 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almén, Markus Sällman, et al. (författare)
  • The obesity gene, TMEM18, is of ancient origin, found in majority of neuronal cells in all major brain regions and associated with obesity in severely obese children
  • 2010
  • Ingår i: BMC Medical Genetics. - : Springer Science and Business Media LLC. - 1471-2350. ; 11, s. 58-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: TMEM18 is a hypothalamic gene that has recently been linked to obesity and BMI in genome wide association studies. However, the functional properties of TMEM18 are obscure. METHODS: The evolutionary history of TMEM18 was inferred using phylogenetic and bioinformatic methods. The gene's expression profile was investigated with real-time PCR in a panel of rat and mouse tissues and with immunohistochemistry in the mouse brain. Also, gene expression changes were analyzed in three feeding-related mouse models: food deprivation, reward and diet-induced increase in body weight. Finally, we genotyped 502 severely obese and 527 healthy Swedish children for two SNPs near TMEM18 (rs6548238 and rs756131). RESULTS: TMEM18 was found to be remarkably conserved and present in species that diverged from the human lineage over 1500 million years ago. The TMEM18 gene was widely expressed and detected in the majority of cells in all major brain regions, but was more abundant in neurons than other cell types. We found no significant changes in the hypothalamic and brainstem expression in the feeding-related mouse models. There was a strong association for two SNPs (rs6548238 and rs756131) of the TMEM18 locus with an increased risk for obesity (p = 0.001 and p = 0.002). CONCLUSION: We conclude that TMEM18 is involved in both adult and childhood obesity. It is one of the most conserved human obesity genes and it is found in the majority of all brain sites, including the hypothalamus and the brain stem, but it is not regulated in these regions in classical energy homeostatic models.
  •  
2.
  •  
3.
  •  
4.
  • Alsiö, Johan, et al. (författare)
  • Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats
  • 2010
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522 .- 1873-7544. ; 171:3, s. 779-787
  • Tidskriftsartikel (refereegranskat)abstract
    • The nucleus accumbens (NAcc) mediates feeding reward; its activity reflects tastants' hedonic value. NAcc dopamine guides immediate responses to reward, however, its involvement in establishing long-term responses after a period of exposure to palatable foods has not been defined. Furthermore, reward-driven overeating propels weight increase, but the scale of weight gain depends on animals' obesity-prone (OP) or -resistant (OR) phenotype. It is unclear whether the NAcc dopamine response to palatable food depends on obesity susceptibility. We investigated the effect of unrestricted extended access to high-fat high-sugar (HFHS) diet on expression of genes encoding dopamine receptors in the NAcc of OP and OR rats. We examined persistence of HFHS diet-induced changes in D(1) and D(2) gene expression in OP and OR rats subjected to HFHS withdrawal (bland chow for 18 days). Effects of restricted access to HFHS by pair-feeding were also studied. Using reverse transcriptase PCR (RT-PCR), we found that NAcc D(1) mRNA was downregulated after long-term HFHS access in OP vs. OR animals. The effect was also observed after 18 days of HFHS withdrawal. Furthermore, restricted HFHS led to downregulation of D(1) as well as of D(2) mRNA levels compared to chow-fed controls. A difference in the expression of mu opioid receptor in the NAcc was also detected between the OP and OR rats during access to palatable food but not after withdrawal. We conclude that exposure to HFHS diets has lasting consequences for the NAcc dopamine system, perhaps modifying the motivation to search for food reward. The fact that the NAcc D(1) expression changes in OP animals after long-term exposure to palatable food and that this effect extends well into the reward discontinuation phase, implicates the D(1) receptor in the propensity to overeat and, in effect, gain weight in obesity prone individuals.
  •  
5.
  •  
6.
  • Alsiö, Johan, et al. (författare)
  • Enhanced Sucrose and Cocaine Self-Administration and Cue-Induced Drug Seeking after Loss of VGLUT2 in Midbrain Dopamine Neurons in Mice
  • 2011
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 31:35, s. 12593-12603
  • Tidskriftsartikel (refereegranskat)abstract
    • The mesostriatal dopamine (DA) system contributes to several aspects of responses to rewarding substances and is implicated in conditions such as drug addiction and eating disorders. A subset of DA neurons has been shown to express the type 2 Vesicular glutamate transporter (Vglut2) and may therefore corelease glutamate. In the present study, we analyzed mice with a conditional deletion of Vglut2 in DA neurons (Vglut2(f/f;DAT-Cre)) to address the functional significance of the glutamate-DA cophenotype for responses to cocaine and food reinforcement. Biochemical parameters of striatal DA function were also examined by using DA receptor autoradiography, immediate-early gene quantitative in situ hybridization after cocaine challenge, and DA-selective in vivo chronoamperometry. Mice in which Vglut2 expression had been abrogated in DA neurons displayed enhanced operant self-administration of both high-sucrose food and intravenous cocaine. Furthermore, cocaine seeking maintained by drug-paired cues was increased by 76%, showing that reward-dependent plasticity is perturbed in these mice. In addition, several lines of evidence suggest that adaptive changes occurred in both the ventral and dorsal striatum in the absence of VGLUT2: DA receptor binding was increased, and basal mRNA levels of the DA-induced early genes Nur77 and c-fos were elevated as after cocaine induction. Furthermore, in vivo challenge of the DA system by potassium-evoked depolarization revealed less DA release in both striatal areas. This study demonstrates that absence of VGLUT2 in DA neurons leads to perturbations of reward consumption as well as reward-associated memory, features of particular relevance for addictive-like behavior.
  •  
7.
  • Alsiö, Johan, et al. (författare)
  • Exposure to a high-fat high-sugar diet causes strong up-regulation of proopiomelanocortin and differentially affects dopamine D1 and D2 receptor gene expression in the brainstem of rats
  • 2014
  • Ingår i: Neuroscience Letters. - : Elsevier BV. - 0304-3940 .- 1872-7972. ; 559, s. 18-23
  • Tidskriftsartikel (refereegranskat)abstract
    • A strong link between obesity and dopamine (DA) has been established by studies associating body weight status to variants of genes related to DA signalling. Human and animal studies investigating this relationship have so far focused mainly on the role of DA within the mesolimbic pathway. The aim of this study was to investigate potential DA receptor dysregulation in the brainstem, where these receptors play a potential role in meal termination, during high-fat high-sugar diet (HFHS) exposure. Expression of other key genes, including proopiomelanocortin (POMC), was also analyzed. We randomized rats into three groups; ad libitum access to HFHS (n=24), restricted HFHS access (n=10), or controls (chow-fed, n=10). After 5 weeks, brainstem gene expression was investigated by qRT-PCR. We observed an increase in POMC expression in ad libitum HFHS-fed rats compared to chow-fed controls (p<0.05). Further, expression of DA D2 receptor mRNA was down-regulated in the brainstem of the HFHS ad libitum-fed rats (p<0.05), whereas expression of the DA D1 receptor was upregulated (p<0.05) in these animals compared to chow-fed rats. In control experiments, we observed no effect relative to chow-fed controls on DA-receptor or POMC gene expression in the hypothalamus of HFHS diet-exposed rats, or in the brainstem of acutely food deprived rats. The present findings suggest brainstem POMC to be responsive to palatable foods, and that DA dysregulation after access to energy-dense diets occurs not only in striatal regions, but also in the brainstem, which could be relevant for overeating and for the development and maintenance of obesity.
  •  
8.
  • Alsiö, Johan, et al. (författare)
  • Feed-forward mechanisms : Addiction-like behavioral and molecular adaptations in overeating
  • 2012
  • Ingår i: Frontiers in neuroendocrinology (Print). - : Elsevier BV. - 0091-3022 .- 1095-6808. ; 33:2, s. 127-139
  • Forskningsöversikt (refereegranskat)abstract
    • Food reward, not hunger, is the main driving force behind eating in the modern obesogenic environment. Palatable foods, generally calorie-dense and rich in sugar/fat, are thus readily overconsumed despite the resulting health consequences. Important advances have been made to explain mechanisms underlying excessive consumption as an immediate response to presentation of rewarding tastants. However, our understanding of long-term neural adaptations to food reward that oftentimes persist during even a prolonged absence of palatable food and contribute to the reinstatement of compulsive overeating of high-fat high-sugar diets, is much more limited. Here we discuss the evidence from animal and human studies for neural and molecular adaptations in both homeostatic and non-homeostatic appetite regulation that may underlie the formation of a "feed-forward" system, sensitive to palatable food and propelling the individual from a basic preference for palatable diets to food craving and compulsive, addiction-like eating behavior.
  •  
9.
  • Alsiö, Johan (författare)
  • From Food Preference to Craving : Behavioural Traits and Molecular Mechanisms
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Preference for palatable and energy-dense foods may be a risk factor for body weight gain and has both genetic and environmental components. Once obesity develops in an individual, weight loss is difficult to achieve. Indeed, obesity is often characterized by repeated attempts to reduce the overconsumption of energy-dense foods, followed by food craving and relapse to overconsumption. Relapse and loss of control over intake are observed also in drug addicts, and it has been shown that obesity and drug addiction not only share behavioural features but also neural circuitry, e.g. the mesolimbic dopamine pathway. In this thesis, we sought to investigate the mechanisms related to food preferences and craving using animal models previously used in addiction research. The risk of gaining weight may implicate behavioural traits and emotional states. We showed in rats that a risk-taking behavioural profile was associated both with increased preference for a high-fat (HF) diet and with increased motivational response to a palatable high-sucrose (HS) diet. Hypothalamic urocortin 2 expression was associated with the preference for the HF diet. We also tested the hypothesis that consumption of HS and HF diets separately or provided simultaneously (HFHS) affect anxiety-like behaviour and locomotion. Furthermore, we showed that withdrawal from HFHS food affects diet-induced obesity-prone (OP) and obesity-resistant (OR) animals differently. OP animals had increased motivation (craving) for HS food pellets as measured by the operant self-administration technique during withdrawal. Dopamine receptor expression in the striatum differed between OP and OR animals both at access to HFHS and during withdrawal. This strongly implicates dopaminergic signaling in the OP phenotype. In humans, food preferences may be monitored using questionnaires. We analyzed food preference data from parents of preschool children, and identified an inverse association of parental preference for high-fat high-protein food and overweight in children. In conclusion, we have employed animal models previously used in the addiction field to identify molecular mechanisms related both to food preference and vulnerability to obesity, and to food craving associated with withdrawal from palatable food. These findings add to our current understanding of obesity.  
  •  
10.
  • Alsiö, Johan, et al. (författare)
  • Impact of nandrolone decanoate on gene expression in endocrine systems related to the adverse effects of anabolic androgenic steroids
  • 2009
  • Ingår i: Basic & Clinical Pharmacology & Toxicology. - : Wiley. - 1742-7835 .- 1742-7843. ; 105:5, s. 307-314
  • Tidskriftsartikel (refereegranskat)abstract
    • Elite athletes, body builders and adolescents misuse anabolic-androgenic steroids (AAS) in order to increase muscle mass or to enhance physical endurance and braveness. The high doses misused are associated with numerous adverse effects. The purpose of this study was to evaluate the impact of chronic supratherapeutic AAS treatment on circulating hormones and gene expression in peripheral tissues related to such adverse effects. Quantitative real-time PCR was used to measure expression levels of in total 37 genes (including peptide hormones, cell membrane receptors, nuclear receptors, steroid synthesising enzymes and other enzymes) in the pituitary, testes, adrenals, adipose tissue, kidneys and liver of male Sprague-Dawley rats after 14-day administration of the AAS nandrolone decanoate, 3 or 15 mg/kg. Plasma glucose and levels of adrenocorticotropic hormone (ACTH), adiponectin, corticosterone, ghrelin, insulin and leptin were also measured. We found several expected effects on the hypothalamic-pituitary-gonadal axis, while the treatment also caused a number of other not previously identified changes in circulating factors and gene transcription levels such as the dose-dependent reduction of the beta(3)-adrenergic receptor in adipose tissue, reduction of both circulating and mRNA levels of adiponectin, up-regulation of both hydroxymethylglutaryl-CoA-reductase, the rate-limiting enzyme in de novo synthesis of cholesterol, and the receptor for ACTH in the adrenals. The results provide evidence for wide ranging effects of AAS on the hypothalamic-pituitary-adrenal axis, adipose tissue and substrates of the renal control of blood pressure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 50
Typ av publikation
tidskriftsartikel (42)
annan publikation (5)
forskningsöversikt (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (40)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Alsiö, Johan (37)
Schiöth, Helgi B. (21)
Westin, Johan, 1965 (13)
Alsiö, Åsa, 1965 (13)
Lagging, Martin, 196 ... (12)
Fredriksson, Robert (11)
visa fler...
Olszewski, Pawel K. (11)
Hellstrand, Kristoff ... (10)
Norkrans, Gunnar, 19 ... (9)
Levine, Allen S (8)
Lindblom, Jonas (8)
Roman, Erika (7)
Hulting, Anna-Lena (6)
Pickering, Chris (6)
Färkkilä, Martti (5)
Langeland, Nina (5)
Pedersen, Court (5)
Mørch, Kristine (5)
Jacobsson, Josefin A ... (4)
Birgner, Carolina (4)
Stephansson, Olga (4)
Buhl, Mads Rauning (4)
Risérus, Ulf (3)
Bergström, Lena (3)
PEDERSEN, C (3)
Cedernaes, Jonathan (3)
Schiöth, Helgi (3)
Langeland, N. (3)
Rembeck, Karolina (3)
Christensen, Peer Br ... (3)
Ferrari, Carlo (3)
Neumann, Avidan U (3)
Pawlotsky, Jean-Mich ... (3)
Schalm, Solko W (3)
Zeuzem, Stefan (3)
Farkkila, M (2)
Marcus, Claude (2)
Lindh, Magnus, 1960 (2)
Nordenankar, Karin (2)
Arvidsson, Emma (2)
Kullander, Klas (2)
Wallén-Mackenzie, Ås ... (2)
Rask-Andersen, Mathi ... (2)
Chavan, Rohit A. (2)
Morch, K. (2)
Askarieh, Galia, 198 ... (2)
Haagmans, Bart L (2)
Ebendal, Ted (2)
Jupp, Bianca (2)
Roberts, Angela C. (2)
visa färre...
Lärosäte
Uppsala universitet (38)
Göteborgs universitet (15)
Karolinska Institutet (8)
Örebro universitet (1)
Lunds universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (50)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (33)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy