SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alsos I. G.) "

Sökning: WFRF:(Alsos I. G.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sabatini, F. M., et al. (författare)
  • sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots
  • 2021
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238.
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called 'sPlot', compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01-40,000 m(2). Time period and grain 1888-2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked.
  •  
2.
  • Lammers, Y., et al. (författare)
  • Clitellate worms (Annelida) in lateglacial and Holocene sedimentary DNA records from the Polar Urals and northern Norway
  • 2019
  • Ingår i: Boreas. - : Wiley. - 0300-9483 .- 1502-3885. ; 48:2, s. 317-329
  • Tidskriftsartikel (refereegranskat)abstract
    • While there are extensive macro- and microfossil records of a range of plants and animals from the Quaternary, earthworms and their close relatives amongst annelids are not preserved as fossils and therefore the knowledge of their past distributions is limited. This lack of fossils means that clitellate worms (Annelida) are currently underused in palaeoecological research, even though they can provide valuable information about terrestrial and aquatic environmental conditions. Their DNA might be preserved in sediments, which offers an alternative method for detection. Here we analyse lacustrine sediments from lakes in the Polar Urals, Arctic Russia, covering the period 24000-1300cal. a BP, and NE Norway, covering 10700-3300cal. a BP, using a universal mammal 16S rDNA marker. While mammals were recorded using the marker (reindeer was detected twice in the Polar Urals core at 23000 and 14000cal. a BP, and four times in the Norwegian core at 11000cal. a BP and between 3600-3300cal. a BP), worm extracellular DNA bycatch' was rather high. In this paper we present the first reported worm detection from ancient DNA. Our results demonstrate that both aquatic and terrestrial clitellates can be identified in late-Quaternary lacustrine sediments, and the ecological information retrievable from this group warrants further research with a more targeted approach.
  •  
3.
  • Graae, Bente J., et al. (författare)
  • The impact of temperature regimes on development, dormancy breaking and germination of dwarf shrub seeds from arctic, alpine and boreal sites.
  • 2008
  • Ingår i: Plant Ecology. - : Springer Science and Business Media LLC. - 1385-0237 .- 1573-5052. ; 198, s. 275-284
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that the infrequent sexual reproduction of arctic dwarf shrubs might be related to the harsh environmental conditions in which they live. If this is the case, then increases in temperature resulting from global climate change might drastically affect regeneration of arctic species. We examined whether recruitment of Empetrum nigrum ssp. hermaphroditum and Vaccinium uliginosum (hereafter E. nigrum and V. uliginosum) was affected by temperature during three reproductive stages: seed development, dormancy breakage and germination. Seeds were collected from an arctic, an alpine (only E. nigrum) and a boreal site with different climates; stored at different winter temperatures and incubated for germination at different temperatures. Seeds of V. uliginosum developed in the boreal region had a higher percentage germination than did seeds developed in the Arctic. In contrast, seeds of E. nigrum from the arctic site had a higher or similar percentage germination than did seeds from the alpine and boreal sites. Increased winter temperatures had no significant effect on resulting germination percentage of E. nigrum. However, V. uliginosum seeds from the arctic site suffered increased fungal attack (and thus decreased germination) when they were stratified under high winter temperatures. Seeds of both species increased germination with increased incubation temperatures. Our results suggest that both species would increase their germination in response to warmer summers. Longer summers might also favour the slow-germinating E. nigrum. However, increased winter temperatures might increase mortality due to fungal attack in V. uliginosum ecotypes that are not adapted to mild winters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy