SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alsterberg Christian M.) "

Sökning: WFRF:(Alsterberg Christian M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Turner, Lucy M., et al. (författare)
  • Pathogenic marine microbes influence the effects of climate change on a commercially important tropical bivalve
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing evidence that climate change will increase the prevalence of toxic algae and harmful bacteria, which can accumulate in marine bivalves. However, we know little about any possible interactions between exposure to these microorganisms and the effects of climate change on bivalve health, or about how this may affect the bivalve toxin-pathogen load. In mesocosm experiments, mussels, Perna viridis, were subjected to simulated climate change (warming and/or hyposalinity) and exposed to harmful bacteria and/or toxin-producing dinoflagellates. We found significant interactions between climate change and these microbes on metabolic and/or immunobiological function and toxin-pathogen load in mussels. Surprisingly, however, these effects were virtually eliminated when mussels were exposed to both harmful microorganisms simultaneously. This study is the first to examine the effects of climate change on determining mussel toxin-pathogen load in an ecologically relevant, multi-trophic context. The results may have considerable implications for seafood safety.
  •  
2.
  • Turner, Lucy M., et al. (författare)
  • Toxic Algae Silence Physiological Responses to Multiple Climate Drivers in a Tropical Marine Food Chain
  • 2019
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Research on the effects of climate change in the marine environment continues to accelerate, yet we know little about the effects of multiple climate drivers in more complex, ecologically relevant settings - especially in sub-tropical and tropical systems. In marine ecosystems, climate change (warming and freshening from land run-oft) will increase water column stratification which is favorable for toxin producing dinoflagellates. This can increase the prevalence of toxic microalgal species, leading to bioaccumulation of toxins by filter feeders, such as bivalves, with resultant negative impacts on physiological performance. In this study we manipulated multiple climate drivers (warming, freshening, and acidification), and the availability of toxic microalgae, to determine their impact on the physiological health, and toxin load of the tropical filter-feeding clam, Meretrix meretrix. Using a structural equation modeling (SEM) approach, we found that exposure to projected marine climates resulted in direct negative effects on metabolic and immunological function and, that these effects were often more pronounced in clams exposed to multiple, rather than single climate drivers. Furthermore, our study showed that these physiological responses were modified by indirect effects mediated through the food chain. Specifically, we found that when bivalves were fed with a toxin-producing dinoflagellate (Alexandrium minutum) the physiological responses, and toxin load changed differently and in a non-predictable way compared to clams exposed to projected marine climates only. Specifically, oxygen consumption data revealed that these clams did not respond physiologically to climate warming or the combined effects of warming, freshening and acidification. Our results highlight the importance of quantifying both direct and, indirect food chain effects of climate drivers on a key tropical food species, and have important implications for shellfish production and food safety in tropical regions.
  •  
3.
  • Klatt, Björn K., et al. (författare)
  • A trophic cascade causes unexpected ecological interactions across the aquatic–terrestrial interface under extreme weather
  • 2022
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 2022:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Trophic cascades in the aquatic environment constitute important mechanisms for improving water quality. However, how the presence or non-presence of these trophic cascades may affect interactions across the aquatic–terrestrial interface remains poorly investigated. Pollinators such as bees may be especially vulnerable to changes in water resource quality induced by trophic cascades. Understanding how aquatic trophic cascades affect bees and pollination becomes even more pressing under ongoing climate change due to increased physiological demands for water under extreme weather events. In a novel field experiment combining terrestrial and aquatic mesocosms, we aimed to test how changes in water quality induced by an aquatic trophic cascade affected foraging and growth of bumblebee colonies as well as foraging of solitary bees. While we expected fish predation to reduce top–down control of zooplankton on phytoplankton and thereby, indirectly, induce increased growth of toxic cyanobacteria, we instead found the trophic cascade to induce the formation of algal surface mats that bumblebees used to access water under a severe heat wave and drought. This access to water was associated with higher bumblebee colony reproductive success, growth and weight compared to control colonies with no trophic cascade induced (and hence no algal surface mats). We also found marginal but non-significant effects on oilseed rape yield, but surprisingly with higher yields in the control treatment where bumblebees could not access water. Our results provide new insights on how aquatic trophic cascades can lead to unpredicted ecological interactions across the aquatic–terrestrial interface facilitated by climate change. Our study highlights the importance of water for the fitness of terrestrial ecosystem service providers under altered environmental conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy