SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alvarez Aliaga Maria Teresa) "

Sökning: WFRF:(Alvarez Aliaga Maria Teresa)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cavero-Olguin, Victor Hugo, et al. (författare)
  • Propionic acid production from glycerol in immobilized cell bioreactor using an acid-tolerant strain of Propionibacterium acidipropionici obtained by adaptive evolution
  • 2021
  • Ingår i: Process Biochemistry. - : Elsevier BV. - 1359-5113. ; 110, s. 223-230
  • Tidskriftsartikel (refereegranskat)abstract
    • Propionic acid (PA) production from agro-industrial residues using propionibacteria has gained interest as an alternative to fossil-based process. Microbial production is however characterized by product inhibition, lowering the product titers and productivity. In this study, Propionibacterium acidipropionici DSMZ4900 was subjected to adaptive evolution to tolerate higher acid concentrations. The strain adapted to growth in medium spiked with 20 g/L PA exhibited improved product titer (16.8 vs 8.72 g/L) and productivity (0.52 vs 0.17 g/L·h) with glycerol as carbon source in batch fermentations. It was immobilized on polyethyleneimine coated recycled glass beads Poraver® and used for fermentations in recycle batch mode with increasing glycerol concentration and decreasing pH, respectively. Doubling yeast extract concentration raised PA yield and productivity by >1.5 fold. Glycerol at 100 g/L was completely consumed to give ∼58 g/L PA at yield of 0.64 mol/mol and productivity of 0.28 g/L·h at pH 6.5. Decreasing fermentation pH to 5.0 increased PA productivity to 0.23 g/L·h from 0.14 g/L·h at pH 6.0 with 20 g/L glycerol, while immobilized cells exhibited no growth. The study shows combination of adaptive evolution and immobilization of cells to result in a robust system for PA fermentation at high glycerol concentration and lower pH.
  •  
2.
  • Cavero Olguin, Victor Hugo, et al. (författare)
  • Stress induced biofilm formation in Propionibacterium acidipropionici and use in propionic acid production.
  • 2019
  • Ingår i: World Journal of Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 0959-3993 .- 1573-0972. ; 35:101
  • Tidskriftsartikel (refereegranskat)abstract
    • Propionibacterium acidipropionici produces propionic acid from different sugars and glycerol; the production can be improved by high cell density fermentations using immobilized cells that help to overcome the limitations of the non-productive lag phase and product inhibition. In this study, the use of stress factors to induce P. acidipropionici to form biofilm and its use as an immobilization procedure in fermentations in bioreactors for producing propionic acid was investigated. Citric acid and sodium chloride increased exopolysaccharide production, biofilm capacity index and trehalose production. Analysis of the expression of trehalose synthesis-related genes otsA and treY by RT-qPCR showed significantly increased expression of only treY during log phase with citric acid, while FISH analysis showed expression of treY and luxS under the influence of both stress factors. The stress factors were then used for development of microbial biofilms as immobilization procedure on Poraver® and AnoxKaldnes® carriers in recycle batch reactors for propionic acid production from 20 g/L glycerol. Highest productivities of 0.7 and 0.78 g/L/h were obtained in Poraver® reactors, and 0.39 and 0.43 g/L/h in AnoxKaldnes® reactors with citric acid and NaCl, respectively.
  •  
3.
  • Flores-Copa, Vidal, et al. (författare)
  • Residual brewing yeast as substrate for co-production of cell biomass and biofilm using Candida maltosa SM4
  • 2021
  • Ingår i: Fermentation. - : MDPI. - 2311-5637. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Candida maltosa was cultivated in the liquid phase of residual brewing yeast, a major brewery residue, to produce biomass and biofilm. Using response surface methodology, the effect of two variables at two different levels was investigated. The independent variables were agitation speed (at 100 and 200 rpm), and aeration (at 1 and 3 L min−1). Aeration was identified to be important for the production of both biomass and biofilm, while agitation was the only factor significantly affecting biofilm production. The maximal production of biofilm (2.33 g L−1) was achieved for agitation of 200 rpm and aeration of 1 L min−1, while the maximum for biomass (16.97 g L−1) was reached for 100 rpm agitation and 3 L min−1 air flow. A logistic model applied to predict the growth of C. maltosa in the exponential phase and the biofilm production, showed a high degree of agreement between the prediction and the actual biomass measured experimentally. The produced biofilms were further characterized using Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA). FTIR allowed the identification of methyl, carbonyl ester and sulfate groups, and revealed the presence of uronic acid moieties and glycosidic bonds. Water-retention ability up to relatively high temperatures was revealed by TGA, and that makes the produced biofilm suitable for production of hydrogels. SEM also gave indications on the hydrogel-forming potential of the biofilm.
  •  
4.
  • Salas-Veizaga, Daniel Martin, et al. (författare)
  • A novel glycoside hydrolase 43-like enzyme from Clostridium boliviensis is an endo-xylanase and a candidate for xylooligosaccharide production from different xylan substrates
  • 2024
  • Ingår i: Applied and Environmental Microbiology. - 0099-2240. ; 90:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An uncharacterized gene encoding a glycoside hydrolase family 43-like enzyme from Clostridium boliviensis strain E-1 was identified from genomic sequence data, and the encoded enzyme, CbE1Xyn43-l, was produced in Escherichia coli. CbE1Xyn43-l (52.9 kDa) is a two-domain endo-β-xylanase consisting of a C-terminal CBM6 and a GH43-like catalytic domain. The positions of the catalytic dyad conserved in GH43, the catalytic base (Asp74), and proton donor (Glu240) were identified in alignments including GH43-enzymes of known 3D-structure from different subfamilies. CbE1Xyn43-l is active at pH 7.0–9.0, with optimum temperature at 65°C, and a more than 7 days’ half-life in irreversible deactivation studies at this temperature. The enzyme hydrolyzed birchwood xylan, quinoa stalks glucuronoarabinoxylan, and wheat arabinoxylan with xylotriose and xylotetraose as major hydrolysis products. CbE1Xyn43-l also released xylobiose from pNPX2 with low turnover (kcat of 0.044 s−1) but was inactive on pNPX, showing that a degree of polymerization of three (DP3) was the smallest hydrolyzable substrate. Divalent ions affected the specific activity on xylan substrates, which dependent on the ion could be increased or decreased. In conclusion, CbE1Xyn43-l from C. boliviensis strain E-1 is the first characterized member of a large group of homologous hypothetical proteins annotated as GH43-like and is a thermostable endo-xylanase, producing xylooligosaccharides of high DP (xylotriose and xylotetraose) producer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy