SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Alves Oliveira Sofia Raquel) "

Search: WFRF:(Alves Oliveira Sofia Raquel)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Neves, Ana Luisa, et al. (author)
  • Determinants of the Use of Health and Fitness Mobile Apps by Patients With Asthma : Secondary Analysis of Observational Studies
  • 2021
  • In: Journal of Medical Internet Research. - : JMIR Publications. - 1438-8871. ; 23:9
  • Journal article (peer-reviewed)abstract
    • Background: Health and fitness apps have potential benefits to improve self-management and disease control among patients with asthma. However, inconsistent use rates have been reported across studies, regions, and health systems. A better understanding of the characteristics of users and nonusers is critical to design solutions that are effectively integrated in patients' daily lives, and to ensure that these equitably reach out to different groups of patients, thus improving rather than entrenching health inequities. Objective: This study aimed to evaluate the use of general health and fitness apps by patients with asthma and to identify determinants of usage. Methods: A secondary analysis of the INSPIRERS observational studies was conducted using data from face-to-face visits. Patients with a diagnosis of asthma were included between November 2017 and August 2020. Individual-level data were collected, including age, gender, marital status, educational level, health status, presence of anxiety and depression, postcode, socioeconomic level, digital literacy, use of health services, and use of health and fitness apps. Multivariate logistic regression was used to model the probability of being a health and fitness app user. Statistical analysis was performed in R. Results: A total of 526 patients attended a face-to-face visit in the 49 recruiting centers and 514 had complete data. Most participants were <= 40 years old (66.4%), had at least 10 years of education (57.4%), and were in the 3 higher quintiles of the socioeconomic deprivation index (70.1%). The majority reported an overall good health status (visual analogue scale [VAS] score>70 in 93.1%) and the prevalence of anxiety and depression was 34.3% and 11.9%, respectively. The proportion of participants who reported using health and fitness mobile apps was 41.1% (n=211). Multivariate models revealed that single individuals and those with more than 10 years of education are more likely to use health and fitness mobile apps (adjusted odds ratio [aOR] 2.22, 95%CI 1.05-4.75 and aOR 1.95, 95%CI 1.12-3.45, respectively). Higher digital literacy scores were also associated with higher odds of being a user of health and fitness apps, with participants in the second, third, and fourth quartiles reporting aORs of 6.74 (95%CI 2.90-17.40), 10.30 (95%CI 4.28-27.56), and 11.52 (95%CI 4.78-30.87), respectively. Participants with depression symptoms had lower odds of using health and fitness apps (aOR 0.32, 95%CI 0.12-0.83). Conclusions: A better understanding of the barriers and enhancers of app use among patients with lower education, lower digital literacy, or depressive symptoms is key to design tailored interventions to ensure a sustained and equitable use of these technologies. Future studies should also assess users' general health-seeking behavior and their interest and concerns specifically about digital tools. These factors may impact both initial engagement and sustained use.
  •  
2.
  • Jimmy, Steffi, et al. (author)
  • A widespread toxin-antitoxin system exploiting growth control via alarmone signaling
  • 2020
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:19, s. 10500-10510
  • Journal article (peer-reviewed)abstract
    • Under stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT. We asked whether analysis of the genomic context of SASs can indicate possible functional roles. Indeed, multiple SAS subfamilies are encoded in widespread conserved bicistronic operon architectures that are reminiscent of those typically seen in toxin-antitoxin (TA) operons. We have validated five of these SASs as being toxic (toxSASs), with neutralization by the protein products of six neighboring antitoxin genes. The toxicity of Cellulomonas marina toxSAS FaRel is mediated by the accumulation of alarmones ppGpp and ppApp, and an associated depletion of cellular guanosine triphosphate and adenosine triphosphate pools, and is counteracted by its HD domain-containing antitoxin. Thus, the ToxSAS-antiToxSAS system with its multiple different antitoxins exemplifies how ancient nucleotide-based signaling mechanisms can be repurposed as TA modules during evolution, potentially multiple times independently.
  •  
3.
  • Kudrin, Pavel, et al. (author)
  • Subinhibitory Concentrations of Bacteriostatic Antibiotics Induce relA-Dependent and relA-Independent Tolerance to beta-Lactams
  • 2017
  • In: Antimicrobial Agents and Chemotherapy. - : AMER SOC MICROBIOLOGY. - 0066-4804 .- 1098-6596. ; 61:4
  • Journal article (peer-reviewed)abstract
    • The nucleotide (p) ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance, and virulence. During amino acid starvation, the Escherichia coli (p) ppGpp synthetase RelA is activated by deacylated tRNA in the ribosomal A-site. An increase in (p) ppGpp is believed to drive the formation of antibiotic-tolerant persister cells, prompting the development of strategies to inhibit (p) ppGpp synthesis. We show that in a biochemical system from purified E. coli components, the antibiotic thiostrepton efficiently inhibits RelA activation by the A-site tRNA. In bacterial cultures, the ribosomal inhibitors thiostrepton, chloramphenicol, and tetracycline all efficiently abolish accumulation of (p) ppGpp induced by the Ile-tRNA synthetase inhibitor mupirocin. This abolishment, however, does not reduce the persister level. In contrast, the combination of dihydrofolate reductase inhibitor trimethoprim with mupirocin, tetracycline, or chloramphenicol leads to ampicillin tolerance. The effect is independent of RelA functionality, specific to beta-lactams, and not observed with the fluoroquinolone norfloxacin. These results refine our understanding of (p) ppGpp's role in antibiotic tolerance and persistence and demonstrate unexpected drug interactions that lead to tolerance to bactericidal antibiotics.
  •  
4.
  • Kudrin, Pavel, et al. (author)
  • The ribosomal A-site finger is crucial for binding and activation of the stringent factor RelA
  • 2018
  • In: Nucleic Acids Research. - : OXFORD UNIV PRESS. - 0305-1048 .- 1362-4962. ; 46:4, s. 1973-1983
  • Journal article (peer-reviewed)abstract
    • During amino acid starvation the Escherichia coli stringent response factor RelA recognizes deacylated tRNA in the ribosomal A-site. This interaction activates RelA-mediated synthesis of alarmone nucleotides pppGpp and ppGpp, collectively referred to as (p)ppGpp. These two alarmones are synthesized by addition of a pyrophosphate moiety to the 3' position of the abundant cellular nucleotide GTP and less abundant nucleotide GDP, respectively. Using untagged native RelA we show that allosteric activation of RelA by pppGpp increases the efficiency of GDP conversion to achieve the maximum rate of (p) ppGpp production. Using a panel of ribosomal RNA mutants, we show that the A-site finger structural element of 23S rRNA helix 38 is crucial for RelA binding to the ribosome and consequent activation, and deletion of the element severely compromises (p) ppGpp accumulation in E. coli upon amino acid starvation. Through binding assays and enzymology, we show that E. coli RelA does not form a stable complex with, and is not activated by, deacylated tRNA off the ribosome. This indicates that in the cell, RelA first binds the empty A-site and then recruits tRNA rather than first binding tRNA and then binding the ribosome.
  •  
5.
  • Kurata, Tatsuaki, et al. (author)
  • A hyperpromiscuous antitoxin protein domain for the neutralization of diverse toxin domains
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:6
  • Journal article (peer-reviewed)abstract
    • Toxin–antitoxin (TA) gene pairs are ubiquitous in microbial chromosomal genomes and plasmids as well as temperate bacteriophages. They act as regulatory switches, with the toxin limiting the growth of bacteria and archaea by compromising diverse essential cellular targets and the antitoxin counteracting the toxic effect. To uncover previously uncharted TA diversity across microbes and bacteriophages, we analyzed the conservation of genomic neighborhoods using our computational tool FlaGs (for flanking genes), which allows high-throughput detection of TA-like operons. Focusing on the widespread but poorly experimentally characterized antitoxin domain DUF4065, our in silico analyses indicated that DUF4065-containing proteins serve as broadly distributed antitoxin components in putative TA-like operons with dozens of different toxic domains with multiple different folds. Given the versatility of DUF4065, we have named the domain Panacea (and proteins containing the domain, PanA) after the Greek goddess of universal remedy. We have experimentally validated nine PanA-neutralized TA pairs. While the majority of validated PanA-neutralized toxins act as translation inhibitors or membrane disruptors, a putative nucleotide cyclase toxin from a Burkholderia prophage compromises transcription and translation as well as inducing RelA-dependent accumulation of the nucleotide alarmone (p)ppGpp. We find that Panacea-containing antitoxins form a complex with their diverse cognate toxins, characteristic of the direct neutralization mechanisms employed by Type II TA systems. Finally, through directed evolution, we have selected PanA variants that can neutralize noncognate TA toxins, thus experimentally demonstrating the evolutionary plasticity of this hyperpromiscuous antitoxin domain.
  •  
6.
  • Kurata, Tatsuaki, et al. (author)
  • RelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis
  • 2021
  • In: Molecular Cell. - : Cell Press. - 1097-2765 .- 1097-4164. ; 81:15, s. 3160-3170.e9
  • Journal article (peer-reviewed)abstract
    • RelA-SpoT Homolog (RSH) enzymes control bacterial physiology through synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered multiple families of small alarmone synthetase (SAS) RSH acting as toxins of toxin-antitoxin (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing an analog of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest used by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2, and CapRel. Surprisingly, all these toxins specifically inhibit protein synthesis. To do so, they transfer a pyrophosphate moiety from ATP to the tRNA 3′ CCA. The modification inhibits both tRNA aminoacylation and the sensing of cellular amino acid starvation by the ribosome-associated RSH RelA. Conversely, we show that some small alarmone hydrolase (SAH) RSH enzymes can reverse the pyrophosphorylation of tRNA to counter the growth inhibition by toxSAS. Collectively, we establish RSHs as RNA-modifying enzymes.
  •  
7.
  • Varik, Vallo, et al. (author)
  • Composition of the outgrowth medium modulates wake-up kinetics and ampicillin sensitivity of stringent and relaxed Escherichia coli
  • 2016
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Journal article (peer-reviewed)abstract
    • The transition of Escherichia coli from the exponential into the stationary phase of growth induces the stringent response, which is mediated by the rapid accumulation of the alarmone nucleotide (p)ppGpp produced by the enzyme RelA. The significance of RelA's functionality during the transition in the opposite direction, i.e. from the stationary phase into new exponential growth, is less well understood. Here we show that the relaxed strain, i.e. lacking the relA gene, displays a relative delay in regrowth during the new exponential growth phase in comparison with the isogenic wild type strain. The severity of the effect is a function of both the carbon source and amino acid composition of the outgrowth media. As a result, the loss of RelA functionality increases E. coli tolerance to the bactericidal antibiotic ampicillin during growth resumption in fresh media in a medium-specific way. Taken together, our data underscore the crucial role of medium composition and growth conditions for studies of the role of individual genes and regulatory networks in bacterial phenotypic tolerance to antibiotics.
  •  
8.
  • Varik, Vallo, et al. (author)
  • HPLC-based quantification of bacterial housekeeping nucleotides and alarmone messengers ppGpp and pppGpp
  • 2017
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Journal article (peer-reviewed)abstract
    • Here we describe an HPLC-based method to quantify bacterial housekeeping nucleotides and the signaling messengers ppGpp and pppGpp. We have replicated and tested several previously reported HPLC-based approaches and assembled a method that can process 50 samples in three days, thus making kinetically resolved experiments feasible. The method combines cell harvesting by rapid filtration, followed by acid extraction, freeze-drying with chromatographic separation. We use a combination of C18 IPRP-HPLC (GMP unresolved and co-migrating with IMP; GDP and GTP; AMP, ADP and ATP; CTP; UTP) and SAX-HPLC in isocratic mode (ppGpp and pppGpp) with UV detection. The approach is applicable to bacteria without the requirement of metabolic labelling with 32P-labelled radioactive precursors. We applied our method to quantify nucleotide pools in Escherichia coli BW25113 K12-strain both throughout the growth curve and during acute stringent response induced by mupirocin. While ppGpp and pppGpp levels vary drastically (40-and >= 8-fold, respectively) these changes are decoupled from the quotients of the housekeeping pool and guanosine and adenosine housekeeping nucleotides: NTP/NDP/NMP ratio remains stable at 6/1/0.3 during both normal batch culture growth and upon acute amino acid starvation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view