SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amabilino D. B.) "

Sökning: WFRF:(Amabilino D. B.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Iavicoli, P., et al. (författare)
  • Tuning the supramolecular chirality of one-and two-dimensional aggregates with the number of stereogenic centers in the component porphyrins
  • 2010
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 132:27, s. 9350-9362
  • Tidskriftsartikel (refereegranskat)abstract
    • A synthetic strategy was developed for the preparation of porphyrins containing between one and four stereogenic centers, such that their molecular weights vary only as a result of methyl groups which give the chiral forms. The low-dimensional nanoscale aggregates of these compounds Reveal the profound effects of this varying molecular chirality on their supramolecular structure and optical activity. The number of stereogenic centers influences significantly the self-assembly and chiral structure of the aggregates of porphyrin molecules described here. A scanning tunneling microscopy study of monolayers on graphite shows that the degree of structural chirality with respect to the surface increases almost linearly with the number of stereogenic centers, and only one handedness is formed in the monolayers, whereas the achiral compound forms a mixture of mirror-image domains at the surface. In solution, four hydrogen bonds induce the formation of an H-aggregate, and circular dichroism measurements and theoretical studies indicate that the compounds self-assemble into helical structures. Both the chirality and stability of the aggregates depend critically on the number of stereocenters. The chiral porphyrin derivatives gelate methylcyclohexane at concentrations dependent on the number and position of chiral groups at the periphery of the aromatic core, reflecting the different aggregation forces of the molecules in solution. Increasing the number of stereogenic centers requires more material to immobilize the solvent, in all likelihood because of the greater solubility of the porphyrins. The vibrational circular dichroism spectra of the gels show that all compounds have a chiral environment around the amide bonds, confirming the helical model proposed by calculations. The morphologies of the xerogels (studied by scanning electron microscopy and scanning force microscopy) are similar, although more fibrous features are present in the molecules with fewer stereogenic centers. Importantly, the presence of only one stereogenic center, bearing a methyl group as the desymmetrizing ligand, in a molecule of considerable molecular weight is enough to induce singlehanded chirality in both the one-and two-dimensional supramolecular self-assembled structures.
  •  
2.
  • Oliveras-González, C., et al. (författare)
  • Bottom-Up Hierarchical Self-Assembly of Chiral Porphyrins through Coordination and Hydrogen Bonds
  • 2015
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 137:50, s. 15795-15808
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of chiral synthetic compounds is reported that shows intricate but specific hierarchical assembly because of varying positions of coordination and hydrogen bonds. The evolution of the aggregates (followed by absorption spectroscopy and temperature-dependent circular dichroism studies in solution) reveal the influence of the proportion of stereogenic centers in the side groups connected to the chromophore ring in their optical activity and the important role of pyridyl groups in the self-assembly of these chiral macrocycles. The optical activity spans 2 orders of magnitude depending on composition and constitution. Two of the aggregates show very high optical activity even though the isolated chromophores barely give a circular dichroism signal. Molecular modeling of the aggregates, starting from the pyridine-zinc(II) porphyrin interaction and working up, and calculation of the circular dichroism signal confirm the origin of this optical activity as the chiral supramolecular organization of the molecules. The aggregates show a broad absorption range, between approximately 390 and 475 nm for the transitions associated with the Soret region alone, that spans wavelengths far more than the isolated chromophore. The supramolecular assemblies of the metalloporphyrins in solution were deposited onto highly oriented pyrolitic graphite in order to study their hierarchy in assembly by atomic force microscopy. Zero and one-dimensional aggregates were observed, and a clear dependence on deposition temperature was shown, indicating that the hierarchical assembly took place largely in solution. Moreover, scanning electron microscopy images of porphyrins and metalloporphyrins precipitated under out-of-equilibrium conditions showed the dependence of the number and position of chiral amide groups in the formation of a fibrillar nanomaterial. The combination of coordination and hydrogen bonding in the complicated assembly of these molecules-where there is a clear hierarchy for zinc(II)-pyridyl interaction followed by hydrogen-bonding between amide groups, and then van der Waals interactions-paves the way for the preparation of molecular materials with multiple chromophore environments.
  •  
3.
  • Danila, Ion, et al. (författare)
  • Hierarchical Chiral Expression from the Nano- to Mesoscale in Synthetic Supramolecular Helical Fibers of a Nonamphiphilic C(3)-Symmetrical pi-Functional Molecule
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 133:21, s. 8344-8353
  • Tidskriftsartikel (refereegranskat)abstract
    • The controlled preparation of chiral structures is a contemporary challenge for supramolecular science because of the interesting properties that can arise from the resulting materials, and here we show that a synthetic nonamphiphilic C(3) compound containing pi-functional tetrathiafulvalene units can form this kind of object. We describe the synthesis, characterization, and self-assembly properties in solution and in the solid state of the enantiopure materials. Circular dichroism (CD) measurements show optical activity resulting from the presence of twisted stacks of preferential helicity and also reveal the critical importance of fiber nucleation in their formation. Molecular mechanics (MM) and molecular dynamics (MD) simulations combined with CD theoretical calculations demonstrate that the (5) enantiomer provides the (M) helix, which is more stable than the (P) helix for this enantiomer. This relationship is for the first time established in this family of C(3) symmetric compounds. In addition, we show that introduction of the "wrong" enantiomer in a stack decreases the helical reversal barrier in a nonlinear manner, which very probably accounts for the absence of a "majority rules" effect. Mesoscopic chiral fibers, which show inverted helicity, i.e. (P) for the (S) enantiomer and (M) for the (R) one, have been obtained upon reprecipitation from dioxane and analyzed by optical and electronic microscopy. The fibers obtained with the racemic mixture present, as a remarkable feature, opposite homochiral domains within the same fiber, separated by points of helical reversal. Their formation can be explained through an "oscillating" crystallization mechanism. Although C(3) symmetric disk-shaped molecules containing a central benzene core substituted in the 1,3,5 positions with 3,3'-diamido-2,2'-bipyridine based wedges have shown peculiar self-assembly properties for amphiphilic derivatives, the present result shows the benefits of reducing the nonfunctional part of the molecule, in our case with short chiral isopentyl chains. The research reported herein represents an important step toward the preparation of functional mesostructures with controlled helical architectures.
  •  
4.
  • Haq, S., et al. (författare)
  • Clean Coupling of Unfunctionalized Porphyrins at Surfaces To Give Highly Oriented Organometallic Oligomers
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 133:31, s. 12031-12039
  • Tidskriftsartikel (refereegranskat)abstract
    • The direct coupling of complex, functional organic molecules at a surface is one of the outstanding challenges in the road map to future molecular devices. Equally demanding is to meet this challenge without recourse to additional functionalization of the molecular building blocks and via clean surface reactions that leave no surface contamination. Here, we demonstrate the directional coupling of unfunctionalized porphyrin molecules-large aromatic multifunctional building blocks-on a single crystal copper surface, which generates highly oriented one-dimensional organometallic macromolecular nanostructures (wires) in a reaction which generates gaseous hydrogen as the only byproduct. In situ scanning tunneling microscopy and temperature programmed desorption, supported by theoretical modeling, reveal that the process is driven by C-H bond scission and the incorporation of copper atoms in between the organic components to form a very stable organocopper oligomer comprising organometallic edge-to-edge porphyrin-Cu-porphyrin connections on the surface that are unprecedented in solution chemistry. The hydrogen generated during the reaction leaves the surface and, therefore, produces no surface contamination. A remarkable feature of the wires is their stability at high temperatures (up to 670 K) and their preference for 1D growth along a prescribed crystallographic direction of the surface. The on-surface formation of directional organometallic wires that link highly functional porphyrin cores via direct C-Cu-C bonds in a single-step synthesis is a new development in surface-based molecular systems and provides a versatile approach to create functional organic nanostructures at surfaces.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy