SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amarsi A.) "

Sökning: WFRF:(Amarsi A.)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Jong, R. S., et al. (författare)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • Ingår i: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  •  
2.
  • Cordoni, G., et al. (författare)
  • Exploring the Galaxy's halo and very metal-weak thick disc with SkyMapper and Gaia DR2
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:2, s. 2539-2561
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we combine spectroscopic information from the SkyMapper survey for Extremely Metal-Poor stars and astrometry from Gaia DR2 to investigate the kinematics of a sample of 475 stars with a metallicity range of -6.5 <= [Fe/H] <= -2.05 dex. Exploiting the action map, we identify 16 and 40 stars dynamically consistent with the Gaia Sausage and Gaia Sequoia accretion events, respectively. The most metal poor of these candidates have metallicities of [Fe/H] = - 3.31 and - 3.74, respectively, helping to define the low-metallicity tail of the progenitors involved in the accretion events. We also find, consistent with other studies, that similar to 21 per cent of the sample have orbits that remain confined to within 3 kpc of the Galactic plane, that is, |Z(max)| <= 3 kpc. Of particular interest is a subsample (similar to 11 per cent of the total) of low |Z(max)| stars with low eccentricities and prograde motions. The lowest metallicity of these stars has [Fe/H] = -4.30 and the subsample is best interpreted as the very low-metallicity tail of the metal-weak thick disc population. The low |Z(max)|, low eccentricity stars with retrograde orbits are likely accreted, while the low |Z(max)|, high eccentricity pro- and retrograde stars are plausibly associated with the Gaia Sausage system. We find that a small fraction of our sample (similar to 4 per cent of the total) is likely escaping from the Galaxy, and postulate that these stars have gained energy from gravitational interactions that occur when infalling dwarf galaxies are tidally disrupted.
  •  
3.
  • Buldgen, G., et al. (författare)
  • Helioseismic determination of the solar metal mass fraction
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The metal mass fraction of the Sun Z is a key constraint in solar modelling, but its value is still under debate. The standard solar chemical composition of the late 2000s has the ratio of metals to hydrogen as Z/X = 0.0181, and there was a small increase to 0.0187 in 2021, as inferred from 3D non-LTE spectroscopy. However, more recent work on a horizontally and temporally averaged ⟨3D⟩ model claim Z/X = 0.0225, which is consistent with the high values based on 1D LTE spectroscopy from 25 years ago.Aims. We aim to determine a precise and robust value of the solar metal mass fraction from helioseismic inversions, thus providing independent constraints from spectroscopic methods.Methods. We devised a detailed seismic reconstruction technique of the solar envelope, combining multiple inversions and equations of state in order to accurately and precisely determine the metal mass fraction value.Results. We show that a low value of the solar metal mass fraction corresponding to Z/X = 0.0187 is favoured by helioseismic constraints and that a higher metal mass fraction corresponding to Z/X = 0.0225 is strongly rejected by helioseismic data.Conclusions. We conclude that direct measurement of the metal mass fraction in the solar envelope favours a low metallicity, in line with the 3D non-LTE spectroscopic determination of 2021. A high metal mass fraction, as measured using a ⟨3D⟩ model in 2022, is disfavoured by helioseismology for all modern equations of state used to model the solar convective envelope.
  •  
4.
  • Carlos, M., et al. (författare)
  • The chemical compositions of multiple stellar populations in the globular cluster NGC 2808
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 519:2, s. 1695-1712
  • Tidskriftsartikel (refereegranskat)abstract
    • Pseudo two-colour diagrams or Chromosome maps (ChM) indicate that NGC 2808 host five different stellar populations. The existing ChMs have been derived by the Hubble Space Telescope photometry, and comprise of stars in a small field of view around the cluster centre. To overcome these limitations, we built a ChM with U, B, I photometry from ground-based facilities that disentangle the multiple stellar populations of NGC 2808 over a wider field of view. We used spectra collected by GIRAFFE@VLT in a sample of 70 red giant branch and seven asymptotic giant branch (AGB) stars to infer the abundances of C, N, O, Al, Fe, and Ni, which combined with literature data for other elements (Li, Na, Mg, Si, Ca, Sc, Ti, Cr, and Mn), and together with both the classical and the new ground-based ChMs, provide the most complete chemical characterization of the stellar populations in NGC 2808 available to date. As typical of the multiple population phenomenon in globular clusters, the light elements vary from one stellar population to another; whereas the iron peak elements show negligible variation between the different populations (at a level of less than or similar to 0.10 dex). Our AGB stars are also characterized by the chemical variations associated with the presence of multiple populations, confirming that this phase of stellar evolution is affected by the phenomenon as well. Intriguingly, we detected one extreme O-poor AGB star (consistent with a high He abundance), challenging stellar evolution models that suggest that highly He-enriched stars should avoid the AGB phase and evolve as AGB-manque star.
  •  
5.
  • Amarsi, Anish, et al. (författare)
  • The GALAH Survey : non-LTE departure coefficients for large spectroscopic surveys
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive sets of stellar spectroscopic observations are rapidly becoming available and these can be used to determine the chemical composition and evolution of the Galaxy with unprecedented precision. One of the major challenges in this endeavour involves constructing realistic models of stellar spectra with which to reliably determine stellar abundances. At present, large stellar surveys commonly use simplified models that assume that the stellar atmospheres are approximately in local thermodynamic equilibrium (LTE). To test and ultimately relax this assumption, we have performed non-LTE calculations for 13 different elements (H, Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, and Ba), using recent model atoms that have physically-motivated descriptions for the inelastic collisions with neutral hydrogen, across a grid of 3756 1D MARCS model atmospheres that spans 3000 <= T-eff/K <= 8000, - 0.5 <= log g/cm s(-2) <= 5.5, and - 5 <= [Fe/H] <= 1. We present the grids of departure coefficients that have been implemented into the GALAH DR3 analysis pipeline in order to complement the extant non-LTE grid for iron. We also present a detailed line-by-line re-analysis of 50 126 stars from GALAH DR3. We found that relaxing LTE can change the abundances by between - 0.7 dex and + 0.2 dex for different lines and stars. Taking departures from LTE into account can reduce the dispersion in the [A/Fe] versus [Fe/H] plane by up to 0.1 dex, and it can remove spurious differences between the dwarfs and giants by up to 0.2 dex. The resulting abundance slopes can thus be qualitatively different in non-LTE, possibly with important implications for the chemical evolution of our Galaxy. The grids of departure coefficients are publicly available and can be implemented into LTE pipelines to make the most of observational data sets from large spectroscopic surveys.
  •  
6.
  • Canocchi, G., et al. (författare)
  • 3D non-LTE modeling of the stellar center-To-limb variation for transmission spectroscopy studies
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Transmission spectroscopy is one of the most powerful techniques used to characterize transiting exoplanets, since it allows for the abundance of the atomic and molecular species in the planetary atmosphere to be measured. However, stellar lines may bias the determination of such abundances if their center-To-limb variations (CLVs) are not properly accounted for. Aims. This paper aims to show that three-dimensional (3D) radiation hydrodynamic models and the assumption of non-local ther-modynamic equilibrium (non-LTE) line formation are required for an accurate modeling of the stellar CLV of the Na I D1 and K I resonance lines on transmission spectra. Methods. We modeled the CLV of the Na I D1 and K I resonance lines in the Sun with 3D non-LTE radiative transfer. The synthetic spectra were compared to solar observations with high spatial and spectral resolution, including new data collected with the CRISP instrument at the Swedish 1-m Solar Telescope between μ = 0.1 and μ = 1.0. Results. Our 3D non-LTE modeling of the Na I D1 resonance line at 5896 A and the K I 7699 A resonance line in the Sun is in good agreement with the observed CLV in the solar spectrum. Moreover, the simulated CLV curve for a Jupiter-Sun system inferred with a 3D non-LTE analysis shows significant differences from the one obtained from a 1D atmosphere. The latter does indeed tend to overestimate the amplitude of the transmission curve by a factor that is on the same order of magnitude as a planetary absorption depth (i.e., up to 0.2%). Conclusions. This work highlights the fact that to correctly characterize exoplanetary atmospheres, 3D non-LTE synthetic spectra ought to be used to estimate the stellar CLV effect in transmission spectra of solar-like planet hosts. Moreover, since different spectral lines show different CLV curves for the same geometry of the planet-star system, it is fundamental to model the CLV individually for each line of interest. The work will be extended to other lines and FGK-Type stars, allowing for synthetic high-resolution spectra to mitigate the stellar contamination of low-resolution planetary spectra, for example, those drawn from JWST.
  •  
7.
  • Nordlander, Thomas, 1985-, et al. (författare)
  • 3D NLTE Analysis of the Most Iron-Deficient Star, SMSS0313-6708
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Models of star formation in the early universe require a detailed understanding of accretion, fragmentation and radiative feedback in metal-free molecular clouds. Different simulations predict different initial mass functions of the first stars, ranging from predominantly low-mass (0.1-10 Msol), to massive (10-100 Msol), or even supermassive (100-1000 Msol). The mass distribution of the first stars should lead to unique chemical imprints on the low-mass second and later generation metal-poor stars still in existence. The chemical composition of SMSS0313-6708, which has the lowest abundances of Ca and Fe of any star known, indicates it was enriched by a single massive supernova.Aims. The photospheres of metal-poor stars are relatively transparent in the UV, which may lead to large three-dimensional (3D) effects as well as departures from local thermodynamical equilibrium (LTE), even for weak spectral lines. If 3D effects and departures from LTE (NLTE) are ignored or treated incorrectly, errors in the inferred abundances may significantly bias the inferred properties of the polluting supernovae. We redetermine the chemical composition of SMSS0313-6708 by means of the most realistic methods available, and compare the results to predicted supernova yields.Methods. A 3D hydrodynamical Stagger model atmosphere and 3D NLTE radiative transfer were applied to obtain accurate abundances for Li, Na, Mg, Al, Ca and Fe. The model atoms employ realistic collisional rates, with no calibrated free parameters.Results. We find significantly higher abundances in 3D NLTE than 1D LTE by 0.8 dex for Fe, and 0.5 dex for Mg, Al and Ca, while Li and Na are unaffected to within 0.03 dex. In particular, our upper limit for [Fe/H] is now a factor ten larger, at [Fe/H] < -6.53 (3 sigma), than previous estimates based on <3D> NLTE (i.e., using averaged 3D models). This higher estimate is due to a conservative upper limit estimation, updated NLTE data, and 3D-<3D> NLTE differences, all of which lead to a higher abundance determination.Conclusions. We find that supernova yields for models in a wide range of progenitor masses reproduce the revised chemical composition. In addition to massive progenitors of 20-60 Msol exploding with low energies (1-2 B, where 1 B = 10^51 erg), we also find good fits for progenitors of 10 Msol, with very low explosion energies (<1 B). We cannot reconcile the new abundances with supernovae or hypernovae with explosion energies above 2.5 B, nor with pair-instability supernovae. 
  •  
8.
  • Aguado, D. S., et al. (författare)
  • PISN-explorer : hunting the descendants of very massive first stars
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 520:1, s. 866-878
  • Tidskriftsartikel (refereegranskat)abstract
    • The very massiv e first stars ( m > 100 M-?) were fundamental to the early phases of reionization, metal enrichment, and supermassive black hole formation. Among them, those with 140 <= m / M-? <= 260 are predicted to evolve as Pair Instability Supernovae (PISN) leaving a unique chemical signature in their chemical yields. Still, despite long searches, the stellar descendants of PISN remain elusive. Here we propose a new methodology, the PISN-explorer, to identify candidates for stars with a dominant PISN enrichment. The PISN-explorer is based on a combination of physically driven models, and the FERRE code; and applied to data from large spectroscopic surv e ys (APOGEE, GALAH, GES, MINCE, and the JINA data base). We looked into more than 1.4 million objects and built a catalogue with 166 candidates of PISN descendants. One of which, 2M13593064 + 3241036, was observed with UVES at VLT and full chemical signature was derived, including the killing elements, Cu and Zn. We find that our proposed methodology is efficient in selecting PISN candidates from both the Milky Way and dwarf satellite galaxies such as Sextans or Draco. Further high-resolution observations are highly required to confirm our best selected candidates, therefore allowing us to probe the existence and properties of the very massive First Stars.
  •  
9.
  • Amarsi, A. M., et al. (författare)
  • 3D non-LTE line formation of neutral carbon in the Sun
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 624
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon abundances in late-type stars are important in a variety of astrophysical contexts. However C I lines, one of the main abundance diagnostics, are sensitive to departures from local thermodynamic equilibrium (LTE). We present a model atom for non-LTE analyses of C I lines, that uses a new, physically-motivated recipe for the rates of neutral hydrogen impact excitation. We analyse C I lines in the solar spectrum, employing a three-dimensional (3D) hydrodynamic model solar atmosphere and 3D non-LTE radiative transfer. We find negative non-LTE abundance corrections for C I lines in the solar photosphere, in accordance with previous studies, reaching up to around 0.1 dex in the disk-integrated flux. We also present the first fully consistent 3D non-LTE solar carbon abundance determination: we infer log is an element of(C) = 8.44 ± 0.02, in good agreement with the current standard value. Our models reproduce the observed solar centre-to-limb variations of various C I lines, without any adjustments to the rates of neutral hydrogen impact excitation, suggesting that the proposed recipe may be a solution to the long-standing problem of how to reliably model inelastic collisions with neutral hydrogen in late-type stellar atmospheres.
  •  
10.
  • Amarsi, A. M., et al. (författare)
  • Carbon and oxygen in metal-poor halo stars
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon and oxygen are key tracers of the Galactic chemical evolution; in particular, a reported upturn in [C/O] towards decreasing [O/H] in metal-poor halo stars could be a signature of nucleosynthesis by massive Population III stars. We reanalyse carbon, oxygen, and iron abundances in 39 metal-poor turn-off stars. For the first time, we take into account 3D hydrodynamic effects together with departures from local thermodynamic equilibrium (LTE) when determining both the stellar parameters and the elemental abundances, by deriving effective temperatures from 3D non-LTE H beta profiles, surface gravities from Gaia parallaxes, iron abundances from 3D LTE Fe ii equivalent widths, and carbon and oxygen abundances from 3D non-LTE C-I and O-I equivalent widths. We find that [C/Fe] stays flat with [Fe/H], whereas [O/Fe] increases linearly up to 0.75 dex with decreasing [Fe/H] down to -3.0 dex. Therefore [C/O] monotonically decreases towards decreasing [C/H], in contrast to previous findings, mainly because the non-LTE e ff ects for O i at low [Fe/H] are weaker with our improved calculations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy