SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ambarki Khalid) "

Sökning: WFRF:(Ambarki Khalid)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ambarki, Khalid, et al. (författare)
  • Accuracy of Parenchymal Cerebral Blood Flow Measurements Using Pseudocontinuous Arterial Spin-labeling in Healthy Volunteers
  • 2015
  • Ingår i: American Journal of Neuroradiology. - 0195-6108 .- 1936-959X. ; 36:10, s. 1816-1821
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: The arterial spin-labeling method for CBF assessment is widely available, but its accuracy is not fully established. We investigated the accuracy of a whole-brain arterial spin-labeling technique for assessing the mean parenchymal CBF and the effect of aging in healthy volunteers. Phase-contrast MR imaging was used as the reference method. MATERIALS AND METHODS: Ninety-two healthy volunteers were included: 49 young (age range, 20-30 years) and 43 elderly (age range, 65-80 years). Arterial spin-labeling parenchymal CBF values were averaged over the whole brain to quantify the mean pCBF(ASL) value. Total. CBF was assessed with phase-contrast MR imaging as the sum of flows in the internal carotid and vertebral arteries, and subsequent division by brain volume returned the pCBF(PCMRI) value. Accuracy was considered as good as that of the reference method if the systematic difference was less than 5 mL/min/100 g of brain tissue and if the 95% confidence intervals were equal to or better than +/- 10 mL/min/100 g. RESULTS: pCBF(ASL) correlated to pCBF(PCMRI) (r = 0.73; P < .001). Significant differences were observed between the pCBF(ASL) and pCBF(PCMRI) values in the young (P = .001) and the elderly (P < .001) volunteers. The systematic differences (mean 2 standard deviations) were -4 +/- 14 mL/min/100 g in the young subjects and 6 +/- 12 mL/min/100 g in the elderly subjects. Young subjects showed higher values than the elderly subjects for pCBF(PCMRI) (young, 57 +/- 8 mL/min/100 g; elderly, 54 +/- 7 mL/min/100 g; P = .05) and pCBF(ASL) (young, 61 +/- 10 mL/min/100 g; elderly, 48 +/- 10 mL/min/100 g; P < .001). CONCLUSIONS: The limits of agreement were too wide for the arterial spin-labeling method to be considered satisfactorily accurate, whereas the systematic overestimation in the young subjects and underestimation in the elderly subjects were close to acceptable. The age-related decrease in parenchymal CBF was augmented in arterial spin-labeling compared with phase-contrast MR imaging.
  •  
2.
  • Ambarki, Khalid, et al. (författare)
  • Blood flow of ophthalmic artery in healthy individuals determined by phase-contrast magnetic resonance imaging
  • 2013
  • Ingår i: Investigative Ophthalmology and Visual Science. - : Association for Research in Vision and Ophthalmology (ARVO). - 0146-0404 .- 1552-5783. ; 54:4, s. 2738-2745
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Recent development of magnetic resonance imaging (MRI) offers new possibilities to assess ocular blood flow. This prospective study evaluates the feasibility of phase-contrast MRI (PCMRI) to measure flow rate in the ophthalmic artery (OA) and establish reference values in healthy young (HY) and elderly (HE) subjects.METHODS: Fifty HY subjects (28 females, 21-30 years of age) and 44 HE (23 females, 64-80 years of age) were scanned on a 3-Tesla MR system. The PCMRI sequence had a spatial resolution of 0.35 mm per pixel, with the measurement plan placed perpendicularly to the OA. Mean flow rate (Qmean), resistive index (RI), and arterial volume pulsatility of OA (ΔVmax) were measured from the flow rate curve. Accuracy of PCMRI measures was investigated using a vessel-phantom mimicking the diameter and the flow rate range of the human OA.RESULTS: Flow rate could be assessed in 97% of the OAs. Phantom investigations showed good agreement between the reference and PCMRI measurements with an error of <7%. No statistical difference was found in Qmean between HY and HE individuals (HY: mean ± SD = 10.37 ± 4.45 mL/min; HE: 10.81 ± 5.15 mL/min, P = 0.655). The mean of ΔVmax (HY: 18.70 ± 7.24 μL; HE: 26.27 ± 12.59 μL, P < 0.001) and RI (HY: 0.62 ± 0.08; HE: 0.67 ± 0.1, P = 0.012) were significantly different between HY and HE.CONCLUSIONS: This study demonstrated that the flow rate of OA can be quantified using PCMRI. There was an age difference in the pulsatility parameters; however, the mean flow rate appeared independent of age. The primary difference in flow curves between HE and HY was in the relaxation phase of the systolic peak.
  •  
3.
  • Ambarki, Khalid, et al. (författare)
  • Brain ventricular size in healthy elderly: comparison between evans index and volume measurement.
  • 2010
  • Ingår i: Neurosurgery. - : Lippincott Williams & Wilkins. - 0148-396X .- 1524-4040. ; 67:1, s. 94-99
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A precise definition of ventricular enlargement is important in the diagnosis of hydrocephalus as well as in assessing central atrophy. The Evans index (EI), a linear ratio between the maximal frontal horn width and the cranium diameter, has been extensively used as an indirect marker of ventricular volume (VV). With modern imaging techniques, brain volume can be directly measured. OBJECTIVE: To determine reference values of intracranial volumes in healthy elderly individuals and to correlate volumes with the EI. METHODS: Magnetic resonance imaging (3 T) was performed in 46 healthy white elderly subjects (mean age +/- standard deviation, 71 +/- 6 years) and in 20 patients (74 +/- 7 years) with large ventricles according to visual inspection. VV, relative VV (RVV), and EI were assessed. Ventricular dilation was defined using VV and EI by a value above the 95th percentile range for healthy elderly individuals. RESULTS: In healthy elderly subjects, we found VV = 37 +/- 18 mL, RVV = 2.47 +/- 1.17%, and EI = 0.281 +/- 0.027. Including the patients, there was a strong correlation between EI and VV (R = 0.94) as well as between EI and RVV (R = 0.95). However, because of a wide 95% prediction interval (VV: +/-45 mL; RVV: +/- 2.54%), EI did not give a sufficiently good estimate of VV and RVV. CONCLUSION: VV (or RVV) and the EI reflect different properties. The exclusive use of EI in clinical studies as a marker of enlarged ventricles should be questioned. We suggest that the definition of dilated ventricles in white elderly individuals be defined as VV >77 mL or RVV >4.96 %. Future studies should compare intracranial volumes with clinical characteristics and prognosis.
  •  
4.
  • Ambarki, Khalid, et al. (författare)
  • Evaluation of Automatic Measurement of the Intracranial Volume Based on Quantitative MR Imaging
  • 2012
  • Ingår i: American Journal of Neuroradiology. - : American Society of Neuroradiology. - 0195-6108 .- 1936-959X. ; 33:10, s. 1951-1956
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Brain size is commonly described in relation to ICV, whereby accurate assessment of this quantity is fundamental. Recently, an optimized MR sequence (QRAPMASTER) was developed for simultaneous quantification of T1, T2, and proton density. ICV can be measured automatically within minutes from QRAPMASTER outputs and a dedicated software, SyMRI. Automatic estimations of ICV were evaluated against the manual segmentation. MATERIALS AND METHODS: In 19 healthy subjects, manual segmentation of ICV was performed by 2 neuroradiologists (Obs1, Obs2) by using QBrain software and conventional T2-weighted images. The automatic segmentation from the QRAPMASTER output was performed by using SyMRI. Manual corrections of the automatic segmentation were performed (corrected-automatic) by Obs1 and Obs2, who were blinded from each other. Finally, the repeatability of the automatic method was evaluated in 6 additional healthy subjects, each having 6 repeated QRAPMASTER scans. The time required to measure ICV was recorded. RESULTS: No significant difference was found between reference and automatic (and corrected-automatic) ICV (P greater than .25). The mean difference between the reference and automatic measurement was -4.84 +/- 19.57 mL (or 0.31 +/- 1.35%). Mean differences between the reference and the corrected-automatic measurements were -0.47 +/- 17.95 mL (-0.01 +/- 1.24%) and -1.26 +/- 17.68 mL (-0.06 +/- 1.22%) for Obs1 and Obs2, respectively. The repeatability errors of the automatic and the corrected-automatic method were less than1%. The automatic method required 1 minute 11 seconds (SD = 12 seconds) of processing. Adding manual corrections required another 1 minute 32 seconds (SD = 38 seconds). CONCLUSIONS: Automatic and corrected-automatic quantification of ICV showed good agreement with the reference method. SyMRI software provided a fast and reproducible measure of ICV.
  •  
5.
  • Ambarki, Khalid, et al. (författare)
  • MR imaging of brain volumes : evaluation of a fully automatic software
  • 2011
  • Ingår i: American Journal of Neuroradiology. - 0195-6108 .- 1936-959X. ; 32:2, s. 408-412
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Automatic assessment of brain volumes is needed in researchand clinical practice. Manual tracing is still the criterionstandard but is time-consuming. It is important to validatethe automatic tools to avoid the problems of clinical studiesdrawing conclusions on the basis of brain volumes estimatedwith methodologic errors. The objective of this study was toevaluate a new commercially available fully automatic softwarefor MR imaging of brain volume assessment. Automatic and expertmanual brain volumes were compared. MATERIALS AND METHODS: MR imaging (3T, axial T2 and FLAIR) was performed in 41 healthyelderly volunteers (mean age, 70 ± 6 years) and 20 patientswith hydrocephalus (mean age, 73 ± 7 years). The softwareQBrain was used to manually and automatically measure the followingbrain volumes: ICV, BTV, VV, and WMHV. The manual method hasbeen previously validated and was used as the reference. Agreementbetween the manual and automatic methods was evaluated by usinglinear regression and Bland-Altman plots. RESULTS: There were significant differences between the automatic andmanual methods regarding all volumes. The mean differences wereICV = 49 ± 93 mL (mean ± 2SD, n = 61), BTV = 11± 70 mL, VV = –6 ± 10 mL, and WMHV = 2.4± 9 mL. The automatic calculations of brain volumes tookapproximately 2 minutes per investigation. CONCLUSIONS: The automatic tool is promising and provides rapid assessmentof brain volumes. However, the software needs improvement beforeit is incorporated into research or daily use. Manual segmentationremains the reference method.
  •  
6.
  • Ambarki, Khalid, et al. (författare)
  • Partial Volume Correction of Cerebral Perfusion Estimates Obtained by Arterial Spin Labeling
  • 2015
  • Ingår i: 16th Nordic-Baltic Conference on Biomedical Engineering. - Cham : Springer International Publishing. - 9783319129662 - 9783319129679 ; , s. 17-19
  • Konferensbidrag (refereegranskat)abstract
    • Arterial Spin labeling (ASL) is a fully non-invasive MRI method capable to quantify cerebral perfusion. However, gray (GM) and white matter (WM) ASL perfusions are difficult to assess separately due to limited spatial resolution increasing the partial volume effects (PVE). In the present study, ASL PVE correction was implemented based on a regression algorithm in 22 healthy young men. PVE corrected perfusion of GM and WM were compared to previous studies. PVE-corrected GM perfusion was in agreement with literature values. In general, WM perfusion was higher despite the use of PVE correction.
  •  
7.
  • Behrens, Anders, et al. (författare)
  • In Reply
  • 2010
  • Ingår i: Neurosurgery. - 0148-396X .- 1524-4040. ; 67:6, s. 1864-
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
8.
  •  
9.
  • Behrens, Anders, et al. (författare)
  • Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure.
  • 2010
  • Ingår i: Neurosurgery. - 0148-396X .- 1524-4040. ; 66:6, s. 1050-1057
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Transcranial Doppler sonography (TCD) assessment of intracranial blood flow velocity has been suggested to accurately determine intracranial pressure (ICP). OBJECTIVE: We attempted to validate this method in patients with communicating cerebrospinal fluid systems using predetermined pressure levels. METHODS: Ten patients underwent a lumbar infusion test, applying 4 to 5 preset ICP levels. On each level, the pulsatility index (PI) in the middle cerebral artery was determined by measuring the blood flow velocity using TCD. ICP was simultaneously measured with an intraparenchymal sensor. ICP and PI were compared using correlation analysis. For further understanding of the ICP-PI relationship, a mathematical model of the intracranial dynamics was simulated using a computer. RESULTS: The ICP-PI regression equation was based on data from 8 patients. For 2 patients, no audible Doppler signal was obtained. The equation was ICP = 23*PI + 14 (R = 0.22, P < .01, N = 35). The 95% confidence interval for a mean ICP of 20 mm Hg was -3.8 to 43.8 mm Hg. Individually, the regression coefficients varied from 42 to 90 and the offsets from -32 to +3. The mathematical simulations suggest that variations in vessel compliance, autoregulation, and arterial pressure have a serious effect on the ICP-PI relationship. CONCLUSIONS: The in vivo results show that PI is not a reliable predictor of ICP. Mathematical simulations indicate that this is caused by variations in physiological parameters.
  •  
10.
  • Dunås, Tora, et al. (författare)
  • A Stereotactic Probabilistic Atlas for the Major Cerebral Arteries
  • 2017
  • Ingår i: Neuroinformatics. - : Springer Science and Business Media LLC. - 1539-2791 .- 1559-0089. ; 15:1, s. 101-110
  • Tidskriftsartikel (refereegranskat)abstract
    • Improved whole brain angiographic and velocity-sensitive MRI is pushing the boundaries of noninvasively obtained cerebral vascular flow information. The complexity of the information contained in such datasets calls for automated algorithms and pipelines, thus reducing the need of manual analyses by trained radiologists. The objective of this work was to lay the foundation for such automated pipelining by constructing and evaluating a probabilistic atlas describing the shape and location of the major cerebral arteries. Specifically, we investigated how the implementation of a non-linear normalization into Montreal Neurological Institute (MNI) space improved the alignment of individual arterial branches. In a population-based cohort of 167 subjects, age 64-68 years, we performed 4D flow MRI with whole brain volumetric coverage, yielding both angiographic and anatomical data. For each subject, sixteen cerebral arteries were manually labeled to construct the atlas. Angiographic data were normalized to MNI space using both rigid-body and non-linear transformations obtained from anatomical images. The alignment of arterial branches was significantly improved by the non-linear normalization (p < 0.001). Validation of the atlas was based on its applicability in automatic arterial labeling. A leave-one-out validation scheme revealed a labeling accuracy of 96 %. Arterial labeling was also performed in a separate clinical sample (n = 10) with an accuracy of 92.5 %. In conclusion, using non-linear spatial normalization we constructed an artery-specific probabilistic atlas, useful for cerebral arterial labeling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40
Typ av publikation
tidskriftsartikel (35)
annan publikation (2)
konferensbidrag (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (33)
övrigt vetenskapligt/konstnärligt (6)
populärvet., debatt m.m. (1)
Författare/redaktör
Ambarki, Khalid (39)
Eklund, Anders (32)
Malm, Jan (31)
Wåhlin, Anders (27)
Birgander, Richard (20)
Zarrinkoob, Laleh (9)
visa fler...
Lindén, Christina (6)
Hallberg, Per (6)
Qvarlander, Sara (5)
Eklund, Anders, 1965 ... (5)
Koskinen, Lars-Owe D (4)
Jóhannesson, Gauti (4)
Johansson, Elias (4)
Jóhannesson, Gauti, ... (3)
Behrens, Anders (3)
Lenfeldt, Niklas (3)
Dunås, Tora (3)
Holmlund, Petter (3)
Svenningsson, Anders (2)
Sundström, Peter (2)
Petr, J. (2)
Israelsson, Hanna (2)
Lindqvist, T. (2)
Koskinen, Lars-Owe (2)
Qvarlander, Sara, Te ... (2)
Zarrinkoob, Laleh, 1 ... (2)
Jacobsson, Johan (2)
Kristiansen, Martin (2)
Blennow, Kaj, 1958 (1)
Zetterberg, Henrik, ... (1)
Wikkelsö, Carsten, 1 ... (1)
Tullberg, Mats, 1965 (1)
Wirestam, Ronnie (1)
Andreasson, Ulf, 196 ... (1)
Petterson, E. (1)
Warntjes, Marcel Jan ... (1)
Wahlin, Anders (1)
Wirestam, R. (1)
Hauksson, Jon (1)
Carlberg, Bo (1)
Eklund, Anders, Prof ... (1)
Wieben, Oliver (1)
Warntjes, Jan Bertus ... (1)
Edsbagge, Mikael (1)
Lindqvist, Thomas (1)
Malm, Jan, Professor (1)
Alperin, Noam (1)
Qvarlander, Sara, 19 ... (1)
Bahrami, Nazila (1)
Marshall-Goebel, Kar ... (1)
visa färre...
Lärosäte
Umeå universitet (40)
Linköpings universitet (4)
Göteborgs universitet (1)
Lunds universitet (1)
Karolinska Institutet (1)
Språk
Engelska (40)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (33)
Teknik (3)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy