SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ambroso S) "

Sökning: WFRF:(Ambroso S)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Orejas, C, et al. (författare)
  • Cold-water corals in aquaria: advances and challenges. A focus on the Mediterranean
  • 2019
  • Ingår i: Mediterranean Cold-Water Corals: Past, Present and Future. - : Springer. - 2213-719X. - 9783319916071
  • Bokkapitel (refereegranskat)abstract
    • Knowledge on basic biological functions of organisms is essential to understand not only the role they play in the ecosystems but also to manage and protect their populations. The study of biological processes, such as growth, reproduction and physiology, which can be approached in situ or by collecting exemplars and rearing them in aquaria, is particularly challenging for deep-sea organisms such as cold-water corals (CWCs). Present experimental work and monitoring of deep-sea populations is still a chimera. Only a handful of research institutes or companies have been able to install in situ marine observatories in the Mediterranean Sea or elsewhere, which facilitate for a continuous monitoring of deep-sea ecosystems. Hence, today’s best way to obtain basic biological information on these organisms is (1) working with collected samples and analysing them post-mortem and / or (2) cultivating corals in aquaria in order to monitor biological processes and investigate coral behaviour and physiological responses under different experimental treatments. The first challenging aspect is the collection process, which implies the use of oceanographic research vessels in most occasions, since these organisms inhabit areas between ca. 150 m to more than 1,000 m depth, and specific sampling gears. The next challenge is the maintenance of the animals on board (in situations where cruises may take weeks) and their transport to home laboratories. Maintenance in the home labs is also extremely challenging since special conditions and set ups are needed to conduct experimental studies to obtain information on the biological processes of these animals. The complexity of the natural environment from which the corals were collected cannot be exactly replicated within the laboratory setting; a fact which has led some researchers to question the validity of work and conclusions drawn from such undertakings. It is evident that aquaria experiments cannot perfectly reflect the real environmental and trophic conditions where these organisms occur, but: (1) in most cases we do not have the possibility to obtain equivalent in situ information and (2) even with limitations, they produce relevant information about 117 the biological limits of the species, which is especially valuable when considering potential future climate change scenarios. This chapter includes many contributions from different authors and it intends to be both, a practical “handbook” for conducting CWC aquaria work, while at the same time, to offer an overview on the CWC research conducted in Mediterranean labs equipped with aquaria infrastructure. Experiences from Atlantic and Pacific laboratories with extensive experience with CWC work have also contributed to this chapter, as their procedures are valuable to any researcher interested in conducting experimental work with CWC in aquaria. It was impossible to include contributions from all labs in the world currently working experimentally with CWCs in the laboratory, but at the conclusion of the chapter we attempt, to our best of our knowledge, to supply a list of laboratories with operational CWC aquaria facilities.
  •  
2.
  • Corbera, G., et al. (författare)
  • Local-scale feedbacks influencing cold-water coral growth and subsequent reef formation
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite cold-water coral (CWC) reefs being considered biodiversity hotspots, very little is known about the main processes driving their morphological development. Indeed, there is a considerable knowledge gap in quantitative experimental studies that help understand the interaction between reef morphology, near-bed hydrodynamics, coral growth, and (food) particle transport processes. In the present study, we performed a 2-month long flume experiment in which living coral nubbins were placed on a reef patch to determine the effect of a unidirectional flow on the growth and physiological condition of Lophelia pertusa. Measurements revealed how the presence of coral framework increased current speed and turbulence above the frontal part of the reef patch, while conditions immediately behind it were characterised by an almost stagnant flow and reduced turbulence. Owing to the higher current speeds that likely promoted a higher food encounter rate and intake of ions involved in the calcification process, the coral nubbins located on the upstream part of the reef presented a significantly enhanced average growth and a lower expression of stress-related enzymes than the downstream ones. Yet, further experiments would be needed to fully quantify how the variations in water hydrodynamics modify particle encounter and ion intake rates by coral nubbins located in different parts of a reef, and how such discrepancies may ultimately affect coral growth. Nonetheless, the results acquired here denote that a reef influenced by a unidirectional water flow would grow into the current: a pattern of reef development that coincides with that of actual coral reefs located in similar water flow settings. Ultimately, the results of this study suggest that at the local scale coral reef morphology has a direct effect on coral growth thus, indicating that the spatial patterns of living CWC colonies in reef patches are the result of spatial self-organisation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy