SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amby Daniel Buchvaldt) "

Sökning: WFRF:(Amby Daniel Buchvaldt)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buchvaldt Amby, Daniel (författare)
  • Identification of transcription factor genes involved in anthocyanin biosynthesis in carrot (Daucus carota L.) using RNA-Seq
  • 2018
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundAnthocyanins are water-soluble colored flavonoids present in multiple organs of various plant species including flowers, fruits, leaves, stems and roots. DNA-binding R2R3-MYB transcription factors, basic helix-loop-helix (bHLH) transcription factors, and WD40 repeat proteins are known to form MYB-bHLH-WD repeat (MBW) complexes, which activates the transcription of structural genes in the anthocyanin pathway. Although black cultivars of carrots (Daucus carota L.) can accumulate large quantities of anthocyanin in their storage roots, the regulatory genes responsible for their biosynthesis are not well characterized. The current study aimed to analyze global transcription profiles based on RNA sequencing (RNA-Seq), and mine MYB, bHLH and WD40 genes that may function as positive or negative regulators in the carrot anthocyanin biosynthesis pathways.ResultsRNA was isolated from differently colored calli, as well as tissue samples from taproots of various black carrot cultivars across the course of development, and gene expression levels of colored and non-colored tissue and callus samples were compared. The expression of 32 MYB, bHLH and WD40 genes were significantly correlated with anthocyanin content in black carrot taproot. Of those, 11 genes were consistently up- or downregulated in a purple color-specific manner across various calli and cultivar comparisons. The expression of 10 out of these 11 genes was validated using real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR).ConclusionsThe results of this study provide insights into regulatory genes that may be responsible for carrot anthocyanin biosynthesis, and suggest that future focus on them may help improve our overall understanding of the anthocyanin synthesis pathway.
  •  
2.
  • Karlsson, Magnus, et al. (författare)
  • Insights on the Evolution of Mycoparasitism from the Genome of Clonostachys rosea
  • 2015
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 7:2, s. 465-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Clonostachys rosea is a mycoparasitic fungus that can control several important plant diseases. Here, we report on the genome sequencing of C. rosea and a comparative genome analysis, in order to resolve the phylogenetic placement of C. rosea and to study the evolution of mycoparasitism as a fungal lifestyle. The genome of C. rosea is estimated to 58.3 Mb, and contains 14,268 predicted genes. A phylogenomic analysis shows that C. Tosco clusters as sister taxon to plant pathogenic Fusarium species, with mycoparasitic/saprotrophic Tfichoderma species in an ancestral position. A comparative analysis of gene family evolution reveals several distinct differences between the included mycoparasites. Clonostachys rosea contains significantly more ATP-binding cassette (ABC) transporters, polyketide synthases, cytochrome P450 monooxygenases, pectin lyases, glucose-methanol-choline oxidoreductases, and lytic polysaccharide monooxygenases compared with other fungi in the Hypocreales. Interestingly, the increase of ABC transporter gene number in C. rosea is associated with phylogenetic subgroups B (multidrug resistance proteins) and G (pleiotropic drug resistance transporters), whereas an increase in subgroup C (multidrug resistance-associated proteins) is evident in Tfichoderma virens. In contrast with mycoparasitic Tfichoderma species, C. rosea contains very few chitinases. Expression of six group B and group G ABC transporter genes was induced in C. rosea during exposure to the Fusafium mycotoxin zearalenone, the fungicide Boscalid or metabolites from the biocontrol bacterium Pseudomonas chiororaphis. The data suggest that tolerance toward secondary metabolites is a prominent feature in the biology of C. rosea.
  •  
3.
  • Nolen, Zachary J, et al. (författare)
  • Historical isolation facilitates species radiation by sexual selection : Insights from Chorthippus grasshoppers
  • 2020
  • Ingår i: Molecular Ecology. - : WILEY. - 0962-1083 .- 1365-294X. ; 29:24, s. 4985-5002
  • Tidskriftsartikel (refereegranskat)abstract
    • Theoretical and empirical studies have shown that species radiations are facilitated when a trait under divergent natural selection is also involved in sexual selection. It is yet unclear how quick and effective radiations are where assortative mating is unrelated to the ecological environment and primarily results from sexual selection. We address this question using sympatric grasshopper species of the genus Chorthippus, which have evolved strong behavioural isolation while lacking noticeable ecomorphological divergence. Mitochondrial genomes suggest that the radiation is relatively recent, dating to the mid-Pleistocene, which leads to extensive incomplete lineage sorting throughout the mitochondrial and nuclear genomes. Nuclear data shows that hybrids are absent in sympatric localities but that all species have experienced gene flow, confirming that reproductive isolation is strong but remains incomplete. Demographic modelling is most consistent with a long period of geographic isolation, followed by secondary contact and extensive introgression. Such initial periods of geographic isolation might facilitate the association between male signaling and female preference, permitting the coexistence of sympatric species that are genetically, morphologically, and ecologically similar, but otherwise behave mostly as good biological species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy