SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amcoff A) "

Sökning: WFRF:(Amcoff A)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Amcoff, Mirjam, et al. (författare)
  • Evolution of egg dummies in Tanganyikan cichlid fishes : the roles of parental care and sexual selection
  • 2013
  • Ingår i: Journal of Evolutionary Biology. - : Wiley. - 1010-061X .- 1420-9101. ; 26:11, s. 2369-2382
  • Forskningsöversikt (refereegranskat)abstract
    • Sexual selection has been suggested to be an important driver of speciation in cichlid fishes of the Great Lakes of Africa, and the presence of male egg dummies is proposed to have played a key role. Here, we investigate how mouthbrooding and egg dummies have evolved in Tanganyikan cichlids, the lineage which seeded the other African radiations, with a special emphasis on the egg dummies. Using modern phylogenetic comparative analyses and a phylogeny including 86% of the 200 described species, we provide formal evidence demonstrating correlated evolution between mouthbrooding and egg dummies in Tanganyikan cichlids. These results concur with existing evidence, suggesting that egg dummies have evolved through sensory exploitation. We also demonstrate that there is a strong evolutionary correlation between the presence of egg dummies and both pre- and post-copulatory sexual selection. Moreover, egg dummy evolution was contingent on the intensity of pre- and post-copulatory sexual selection in Tanganyikan cichlids. In sum, our results provide evidence supporting the hypothesis of egg dummies evolving through sensory exploitation and highlight the role of sexual selection in favouring the evolution and maintenance of this trait.
  •  
4.
  • Jutfelt, Fredrik, et al. (författare)
  • Brain cooling marginally increases acute upper thermal tolerance in Atlantic cod
  • 2019
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 0022-0949 .- 1477-9145. ; 222:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Physiological mechanisms determining thermal limits in fishes are debated but remain elusive. It has been hypothesised that motor function loss, observed as loss of equilibrium during acute warming, is due to direct thermal effects on brain neuronal function. To test this, we mounted cooling plates on the heads of Atlantic cod (Gadus morhua) and quantified whether local brain cooling increased whole-organism acute upper thermal tolerance. Brain cooling reduced brain temperature by 2-6 °C below ambient water temperature and increased thermal tolerance by 0.5 and 0.6 °C on average relative to instrumented and uninstrumented controls, respectively, suggesting that direct thermal effects on brain neurons may contribute to setting upper thermal limits in fish. However, the improvement in thermal tolerance with brain cooling was small relative to the difference in brain temperature, demonstrating that other mechanisms (e.g. failure of spinal and peripheral neurons, or muscle) may also contribute to controlling acute thermal tolerance.
  •  
5.
  •  
6.
  • Norin, Tommy, et al. (författare)
  • Predator presence affects activity patterns but not food consumption or growth of juvenile corkwing wrasse (Symphodus melops)
  • 2021
  • Ingår i: Behavioral Ecology and Sociobiology. - : Springer. - 0340-5443 .- 1432-0762. ; 75:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Indirect effects of predators can manifest themselves as changes in prey behaviour and physiology. Given that digestion requires energy, it has been suggested that prey will choose to eat smaller meals under predation risk to reserve a larger portion of the aerobic metabolic scope they have available for energetically demanding tasks more critical than digestion, such as escape. To test this prediction, we quantified food consumption and growth of juvenile corkwing wrasses (Symphodus melops) over 11 days in the presence or absence of a predator (Atlantic cod, Gadus morhua). We then quantified behaviour and food consumption of the same wrasses in behavioural arenas with a predator. All food consumption was examined in the context of the aerobic scope that would have been available during the digestive period. Overall, there was no effect of predator exposure on food consumption or growth, yet predator-exposed wrasses were more consistent in their daily food consumption, lending some support to our prediction of prey bet-hedging on meal size under predation risk. The lack of a clear pattern may have resulted from a relatively low percentage of aerobic scope (similar to 20-27%) being occupied by digestion, such that fish retained ample capacity for activities other than digestion. In the subsequent behavioural trials, predator-exposed wrasses were more active and spent more time near the cod than predator-naive wrasses, suggesting the former had habituated to predation threat and were more risk-taking. Our results highlight the complex and often counter-intuitive effects that predator presence can have on prey populations beyond direct consumption. Significance statement Predators affect the behaviour of prey species by simply being present in the environment. Such intimidation by predators can change activity patterns of prey and be as important as direct predation for ecosystem dynamics. However, compared to behavioural changes, we know little about how predators indirectly affect prey physiology. We investigated if fish deliberately eat less food when a predator is present, in order to retain sufficient physiological capacity for avoiding a potential attack, on top of the energetically costly process of digesting. While our study confirms that predator encounters reduce prey activity, prey fish appeared to rapidly habituate to predator presence and we did not see reduced food consumption in predator-exposed fish; these were, however, more consistent than unexposed fish in their daily food consumption, suggesting that fish may still be mindful about protecting their aerobic capacity under predation risk.
  •  
7.
  • Roche, Dominique G., et al. (författare)
  • Behavioural lateralization in a detour test is not repeatable in fishes
  • 2020
  • Ingår i: Animal Behaviour. - : Elsevier BV. - 0003-3472 .- 1095-8282. ; 167, s. 55-64
  • Tidskriftsartikel (refereegranskat)abstract
    • Behavioural lateralization, the asymmetric expression of cognitive functions, is reported to enhance key fitness-relevant traits such as group coordination, multitasking and predator escape. Therefore, studies reporting negative effects on lateralization in fish due to environmental stressors such as ocean acidification, hypoxia and pollutants are worrisome. However, such studies tend to use a detour test and focus on population level measures, without validating whether lateralization is consistent within individuals across time. We conducted a multispecies, international assessment of the repeatability (R) of lateralization in four previously studied fish species using a detour test (T-maze), a common method for testing lateralization. We also reanalysed a published data set on a fifth species using new statistical methods. We expected the three shoaling species to exhibit greater within-individual consistency in lateralization than their nonshoaling counterparts given previous reports of stronger lateralization in group-living fishes. Absolute and relative lateralization scores were highly nonrepeatable in all five species (0.01<R<0.08), irrespective of their shoaling status. We carefully reviewed 31 published studies in which the detour test was employed to examine lateralization in fish and identified statistical issues in all of them. We develop and propose new statistical analyses to test for population and individual level lateralization. The commonly used detour test does not appear to be appropriate for quantifying behavioural lateralization in fishes, calling into question functional inferences drawn by many published studies, including our own. Potential fitness benefits of lateralization and anthropogenic effects on lateralization as a proxy for adaptive brain functioning need to be assessed with alternative paradigms.
  •  
8.
  • Rodrigues, Leonor R., et al. (författare)
  • Fluctuating heat stress during development exposes reproductive costs and putative benefits
  • 2022
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 91:2, s. 391-403
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature and thermal variability are increasing worldwide, with well-known survival consequences. However, effects on other potentially more thermally sensitive reproductive traits are less understood, especially when considering thermal variation. Studying the consequences of male reproduction in the context of climate warming and ability to adapt is becoming increasingly relevant.Our goals were to test how exposure to different average temperatures that either fluctuated or remained constant impacts different male reproductive performance traits and to assess adaptive potential to future heat stress.We took advantage of a set of Drosophila melanogaster isogenic lines of different genotypes, exposing them to four different thermal conditions. These conditions represented a benign and a stressful mean temperature, applied either constantly or fluctuating around the mean and experienced during development when heat stress avoidance is hindered because of restricted mobility. We measured subsequent male reproductive performance for mating success, fertility, number of offspring produced and offspring sex ratio, and calculated the influence of thermal stress on estimated heritability and evolvability of these reproductive traits.Both costs and benefits to different thermal conditions on reproductive performance were found, with some responses varying between genotypes. Mating success improved under fluctuating benign temperature conditions and declined as temperature stress increased regardless of genotype. Fertility and productivity were severely reduced at fluctuating mean high temperature for all genotypes, but some genotypes were unaffected at constant high mean temperature. These more thermally robust genotypes showed a slight increase in productivity under the fluctuating benign condition compared to constant high temperature, despite both thermal conditions sharing the same temperature for 6 hr daily. Increasing thermal stress resulted in higher heritability and evolvability.Overall, the effects of temperature on reproductive performance depended on the trait and genotype; performance of some traits slightly increased when high temperatures were experienced for short periods but decreased substantially even when experiencing a benign temperature for a portion of each day. While thermal stress increased genetic variation that could provide adaptive potential against climate warming, this is unlikely to compensate for the overall severe negative effect on reproductive performance as mean temperature and variance increase.
  •  
9.
  •  
10.
  • Zandawala, Meet, et al. (författare)
  • A neuroendocrine pathway modulating osmotic stress in Drosophila
  • 2021
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental factors challenge the physiological homeostasis in animals, thereby evoking stress responses. Various mechanisms have evolved to counter stress at the organism level, including regulation by neuropeptides. In recent years, much progress has been made on the mechanisms and neuropeptides that regulate responses to metabolic/nutritional stress, as well as those involved in countering osmotic and ionic stresses. Here, we identified a peptidergic pathway that links these types of regulatory functions. We uncover the neuropeptide Corazonin (Crz), previously implicated in responses to metabolic stress, as a neuroendocrine factor that inhibits the release of a diuretic hormone, CAPA, and thereby modulates the tolerance to osmotic and ionic stress. Both knockdown of Crz and acute injections of Crz peptide impact desiccation tolerance and recovery from chill-coma. Mapping of the Crz receptor (CrzR) expression identified three pairs of Capa-expressing neurons (Va neurons) in the ventral nerve cord that mediate these effects of Crz. We show that Crz acts to restore water/ion homeostasis by inhibiting release of CAPA neuropeptides via inhibition of cAMP production in Va neurons. Knockdown of CrzR in Va neurons affects CAPA signaling, and consequently increases tolerance for desiccation, ionic stress and starvation, but delays chill-coma recovery. Optogenetic activation of Va neurons stimulates excretion and simultaneous activation of Crz and CAPA-expressing neurons reduces this response, supporting the inhibitory action of Crz. Thus, Crz inhibits Va neurons to maintain osmotic and ionic homeostasis, which in turn affects stress tolerance. Earlier work demonstrated that systemic Crz signaling restores nutrient levels by promoting food search and feeding. Here we additionally propose that Crz signaling also ensures osmotic homeostasis by inhibiting release of CAPA neuropeptides and suppressing diuresis. Thus, Crz ameliorates stress-associated physiology through systemic modulation of both peptidergic neurosecretory cells and the fat body in Drosophila.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy