SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ament Velásquez Sandra Lorena Ph.D. 1988 ) "

Sökning: WFRF:(Ament Velásquez Sandra Lorena Ph.D. 1988 )

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ament-Velásquez, Sandra Lorena, Ph.D. 1988-, et al. (författare)
  • High-Quality Genome Assemblies of 4 Members of the Podospora anserina Species Complex
  • 2024
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The filamentous fungus Podospora anserina is a model organism used extensively in the study of molecular biology, senescence, prion biology, meiotic drive, mating-type chromosome evolution, and plant biomass degradation. It has recently been established that P. anserina is a member of a complex of 7 closely related species. In addition to P. anserina, high-quality genomic resources are available for 2 of these taxa. Here, we provide chromosome-level annotated assemblies of the 4 remaining species of the complex, as well as a comprehensive data set of annotated assemblies from a total of 28 Podospora genomes. We find that all 7 species have genomes of around 35 Mb arranged in 7 chromosomes that are mostly collinear and less than 2% divergent from each other at genic regions. We further attempt to resolve their phylogenetic relationships, finding significant levels of phylogenetic conflict as expected from a rapid and recent diversification.
  •  
2.
  • Ament-Velásquez, Sandra Lorena, Ph.D. 1988-, et al. (författare)
  • Podospora anserina
  • 2022
  • Ingår i: Trends in Microbiology. - : Elsevier BV. - 0966-842X .- 1878-4380. ; 30:12, s. 1243-1244
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Ament-Velásquez, Sandra Lorena, Ph.D. 1988-, et al. (författare)
  • The Dynamics of Adaptation to Stress from Standing Genetic Variation and de novo Mutations
  • 2022
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 39:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Adaptation from standing genetic variation is an important process underlying evolution in natural populations, but we rarely get the opportunity to observe the dynamics of fitness and genomic changes in real time. Here, we used experimental evolution and Pool-Seq to track the phenotypic and genomic changes of genetically diverse asexual populations of the yeast Saccharomyces cerevisiae in four environments with different fitness costs. We found that populations rapidly and in parallel increased in fitness in stressful environments. In contrast, allele frequencies showed a range of trajectories, with some populations fixing all their ancestral variation in <30 generations and others maintaining diversity across hundreds of generations. We detected parallelism at the genomic level (involving genes, pathways, and aneuploidies) within and between environments, with idiosyncratic changes recurring in the environments with higher stress. In particular, we observed a tendency of becoming haploid-like in one environment, whereas the populations of another environment showed low overall parallelism driven by standing genetic variation despite high selective pressure. This work highlights the interplay between standing genetic variation and the influx of de novo mutations in populations adapting to a range of selective pressures with different underlying trait architectures, advancing our understanding of the constraints and drivers of adaptation.
  •  
4.
  • Ament-Velásquez, Sandra Lorena, Ph.D. 1988-, et al. (författare)
  • The plot thickens : haploid and triploid-like thalli, hybridization, and biased mating type ratios in Letharia
  • 2021
  • Ingår i: Frontiers in Fungal Biology. - : Frontiers Media S.A.. - 2673-6128. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of the reproductive biology of lichen fungal symbionts has been traditionally challenging due to their complex lifestyles. Against the common belief of haploidy, a recent genomic study found a triploid-like signal in Letharia. Here, we infer the genome organization and reproduction in Letharia by analyzing genomic data from a pure culture and from thalli, and performing a PCR survey of the MAT locus in natural populations. We found that the read count variation in the four Letharia specimens, including the pure culture derived from a single sexual spore of L. lupina, is consistent with haploidy. By contrast, the L. lupina read counts from a thallus’ metagenome are triploid-like. Characterization of the mating-type locus revealed a conserved heterothallic configuration across the genus, along with auxiliary genes that we identified. We found that the mating-type distributions are balanced in North America for L. vulpina and L. lupina, suggesting widespread sexual reproduction, but highly skewed in Europe for L. vulpina, consistent with predominant asexuality. Taken together, we propose that Letharia fungi are heterothallic and typically haploid, and provide evidence that triploid-like individuals are hybrids between L. lupina and an unknown Letharia lineage, reconciling classic systematic and genetic studies with recent genomic observations.
  •  
5.
  • Clavé, Corinne, et al. (författare)
  • het-B allorecognition in Podospora anserina is determined by pseudo-allelic interaction of genes encoding a HET and lectin fold domain protein and a PII-like protein
  • 2024
  • Ingår i: PLOS Genetics. - 1553-7390 .- 1553-7404. ; 20:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Filamentous fungi display allorecognition genes that trigger regulated cell death (RCD) when strains of unlike genotype fuse. Podospora anserina is one of several model species for the study of this allorecognition process termed heterokaryon or vegetative incompatibility. Incompatibility restricts transmission of mycoviruses between isolates. In P. anserina, genetic analyses have identified nine incompatibility loci, termed het loci. Here we set out to clone the genes controlling het-B incompatibility. het-B displays two incompatible alleles, het-B1 and het-B2. We find that the het-B locus encompasses two adjacent genes, Bh and Bp that exist as highly divergent allelic variants (Bh1/Bh2 and Bp1/Bp2) in the incompatible haplotypes. Bh encodes a protein with an N-terminal HET domain, a cell death inducing domain bearing homology to Toll/interleukin-1 receptor (TIR) domains and a C-terminal domain with a predicted lectin fold. The Bp product is homologous to PII-like proteins, a family of small trimeric proteins acting as sensors of adenine nucleotides in bacteria. We show that although the het-B system appears genetically allelic, incompatibility is in fact determined by the non-allelic Bh1/Bp2 interaction while the reciprocal Bh2/Bp1 interaction plays no role in incompatibility. The highly divergent C-terminal lectin fold domain of BH determines recognition specificity. Population studies and genome analyses indicate that het-B is under balancing selection with trans-species polymorphism, highlighting the evolutionary significance of the two incompatible haplotypes. In addition to emphasizing anew the central role of TIR-like HET domains in fungal RCD, this study identifies novel players in fungal allorecognition and completes the characterization of the entire het gene set in that species.
  •  
6.
  • Hartmann, Fanny E., et al. (författare)
  • Size Variation of the Nonrecombining Region on the Mating-Type Chromosomes in the Fungal Podospora anserina Species Complex
  • 2021
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 38:6, s. 2475-2492
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex chromosomes often carry large nonrecombining regions that can extend progressively over time, generating evolutionary strata of sequence divergence. However, some sex chromosomes display an incomplete suppression of recombination. Large genomic regions without recombination and evolutionary strata have also been documented around fungal mating-type loci, but have been studied in only a few fungal systems. In the model fungus Podospora anserina (Ascomycota, Sordariomycetes), the reference S strain lacks recombination across a 0.8-Mb region around the mating-type locus. The lack of recombination in this region ensures that nuclei of opposite mating types are packaged into a single ascospore (pseudohomothallic lifecycle). We found evidence for a lack of recombination around the mating-type locus in the genomes of ten P. anserina strains and six closely related pseudohomothallic Podospora species. Importantly, the size of the nonrecombining region differed between strains and species, as indicated by the heterozygosity levels around the mating-type locus and experimental selfing. The nonrecombining region is probably labile and polymorphic, differing in size and precise location within and between species, resulting in occasional, but infrequent, recombination at a given base pair. This view is also supported by the low divergence between mating types, and the lack of strong linkage disequilibrium, chromosomal rearrangements, transspecific polymorphism and genomic degeneration. We found a pattern suggestive of evolutionary strata in P. pseudocomata. The observed heterozygosity levels indicate low but nonnull outcrossing rates in nature in these pseudohomothallic fungi. This study adds to our understanding of mating-type chromosome evolution and its relationship to mating systems.
  •  
7.
  • Hiltunen Thorén, Markus, et al. (författare)
  • Stage-specific transposon activity in the life cycle of the fairy-ring mushroom Marasmius oreades
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 119:46
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variability can be generated by different mechanisms, and across the life cycle. Many basidiomycete fungi have an extended somatic stage, during which each cell carries two genetically distinct haploid nuclei (dikaryosis), resulting from fusion of two compatible monokaryotic individuals. Recent findings have revealed remarkable genome stability at the nucleotide level during dikaryotic growth in these organisms, but whether this pattern extends to mutations affecting large genomic regions remains unknown. Furthermore, despite high genome integrity during dikaryosis, basidiomycete populations are not devoid of genetic diversity, begging the question of when this diversity is introduced. Here, we used a Marasmius oreades fairy ring to investigate the rise of large-scale variants during mono- and dikaryosis. By separating the two nuclear genotypes from four fruiting bodies and generating complete genome assemblies, we gained access to investigate genomic changes of any size. We found that during dikaryotic growth in nature the genome stayed intact, but after separating the nucleotypes into monokaryons, a considerable amount of structural variation started to accumulate, driven to large extent by transposons. Transposon insertions were also found in monokaryotic single-meiospore isolates. Hence, we show that genome integrity in basidiomycetes can be interrupted during monokaryosis, leading to genomic rearrangements and increased activity of transposable elements. We suggest that genetic diversification is disproportionate between life cycle stages in mushroom-forming fungi, so that the short-lived monokaryotic growth stage is more prone to genetic changes than the dikaryotic stage.
  •  
8.
  • Martinossi-Allibert, Ivain, 1991-, et al. (författare)
  • Invasion and maintenance of meiotic drivers in populations of ascomycete fungi
  • 2021
  • Ingår i: Evolution. - : John Wiley & Sons. - 0014-3820 .- 1558-5646. ; 75:5, s. 1150-1169
  • Tidskriftsartikel (refereegranskat)abstract
    • Meiotic drivers (MDs) are selfish genetic elements that are able to become overrepresented among the products of meiosis. This transmission advantage makes it possible for them to spread in a population even when they impose fitness costs on their host organisms. Whether an MD can invade a population, and subsequently reach fixation or coexist in a stable polymorphism, depends on the one hand on the biology of the host organism, including its life cycle, mating system, and population structure, and on the other hand on the specific fitness effects of the driving allele on the host. Here, we present a population genetic model for spore killing, a type of drive specific to fungi. We show how ploidy level, rate of selfing, and efficiency of spore killing affect the invasion probability of a driving allele and the conditions for its stable coexistence with a nondriving allele. Our model can be adapted to different fungal life cycles, and is applied here to two well-studied genera of filamentous ascomycetes known to harbor spore-killing elements, Neurospora and Podospora. We discuss our results in the light of recent empirical findings for these two systems.
  •  
9.
  • Martinossi-Allibert, Ivain, 1991-, et al. (författare)
  • To self or not to self? : Absence of mate choice despite costly outcrossing in the fungus Podospora anserina
  • 2023
  • Ingår i: Journal of Evolutionary Biology. - : John Wiley & Sons. - 1010-061X .- 1420-9101. ; 36:1, s. 238-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi have a large potential for flexibility in their mode of sexual reproduction, resulting in mating systems ranging from haploid selfing to outcrossing. However, we know little about which mating strategies are used in nature, and why, even in well-studied model organisms. Here, we explored the fitness consequences of alternative mating strategies in the ascomycete fungus Podospora anserina. We measured and compared fitness proxies of nine genotypes in either diploid selfing or outcrossing events, over two generations, and with or without environmental stress. We showed that fitness was consistently lower in outcrossing events, irrespective of the environment. The cost of outcrossing was partly attributed to non-self recognition genes with pleiotropic effects on fertility. We then predicted that when presented with options to either self or outcross, individuals would perform mate choice in favour of the reproductive strategy that yields higher fitness. Contrary to our prediction, individuals did not seem to avoid outcrossing when a choice was offered, in spite of the fitness cost incurred. Our results suggest that, although functionally diploid, P. anserina does not benefit from outcrossing in most cases. We outline different explanations for the apparent lack of mate choice in face of high fitness costs associated with outcrossing, including a new perspective on the pleiotropic effect of non-self recognition genes.
  •  
10.
  • Reifova, Radka, et al. (författare)
  • Mechanisms of Intrinsic Postzygotic Isolation : From Traditional Genic and Chromosomal Views to Genomic and Epigenetic Perspectives
  • 2023
  • Ingår i: Cold Spring Harbor Perspectives in Biology. - 1943-0264. ; 15:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrinsic postzygotic isolation typically appears as reduced viability or fertility of interspecific hybrids caused by genetic incompatibilities between diverged parental genomes. Dobzhansky-Muller interactions among individual genes, and chromosomal rearrangements causing problems with chromosome synapsis and recombination in meiosis, have both long been considered as major mechanisms behind intrinsic postzygotic isolation. Recent research has, however, suggested that the genetic basis of intrinsic postzygotic isolation can be more complex and involves, for example, overall divergence of the DNA sequence or epigenetic changes. Here, we review the mechanisms of intrinsic postzygotic isolation from genic, chromosomal, genomic, and epigenetic perspectives across diverse taxa. We provide empirical evidence for these mechanisms, discuss their importance in the speciation process, and highlight questions that remain unanswered.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy