SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amidani Lucia) "

Sökning: WFRF:(Amidani Lucia)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amidani, Lucia, et al. (författare)
  • Oxygen K-Edge X-ray Absorption Spectra of ThO2 and CeO2 : Experiment, Interpretation, and Structural Effects
  • 2023
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 127:6, s. 3077-3084
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental oxygen K-edge spectra of ThO2 and CeO2 are presented and interpreted based on density functional theory (DFT). The contribution of d and f orbitals to the O Kedge spectrum is identified as well-distinguished peaks, the presence of which evidences the strong hybridization of Th and Ce metal centers with O orbitals. The sensitivity of the O K-edge to both f- and d-states in the absence of a core-hole on the metal ion results in an insightful overview of the electronic structure involved in the chemical bond. In particular, the large bandwidth of the Th 5f band as compared to the Ce 4f band is observed as a set of wider and more substantial set of peaks in the O K-edge, confirming the stronger hybridization of the former with O orbitals. The peak ascribed to the 5f band of ThO2 is found at higher energy than the 6d band, as predicted from DFT calculations on actinide dioxides. To highlight the sensitivity and the potential use of the O K-edge for the characterization of ThO2-based systems, the sensitivity of the spectrum to structural changes such as lattice expansion and size reduction are calculated and discussed.
  •  
2.
  • Amidani, Lucia, et al. (författare)
  • Understanding the size effects on the electronic structure of ThO2 nanoparticles
  • 2019
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 21:20, s. 10635-10643
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing characterization techniques and analysis methods adapted to the investigation of nanoparticles (NPs) is of fundamental importance considering the role of these materials in many fields of research. The study of actinide based NPs, despite their environmental relevance, is still underdeveloped compared to that of NPs based on stable and lighter elements. We present here an investigation of ThO2 NPs performed with High-Energy Resolution Fluorescence Detected (HERFD) X-ray Absorption Near-Edge Structure (XANES) and with ab initio XANES simulations. The first post-edge feature of Th L-3 edge HERFD XANES disappears in small NPs and simulations considering non-relaxed structural models reproduce the trends observed in experimental data. Inspection of the simulations of Th atoms in the core and on the surface of the NP indeed demonstrates that the first post-edge feature is very sensitive to the lowering of the number of coordinating atoms and therefore to the more exposed Th atoms at the surface of the NP. The sensitivity of the L-3 edge HERFD XANES to low coordinated atoms at the surface stems from the hybridization of the d-Density of States (DOS) of Th with both O and Th neighboring atoms. This may be a common feature to other oxide systems that can be exploited to investigate surface interactions.
  •  
3.
  • Boulanger, Nicolas, et al. (författare)
  • Enhanced Sorption of Radionuclides by Defect-Rich Graphene Oxide
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:40, s. 45122-45135
  • Tidskriftsartikel (refereegranskat)abstract
    • Extremely defect graphene oxide (dGO) is proposed as an advanced sorbent for treatment of radioactive waste and contaminated natural waters. dGO prepared using a modified Hummers oxidation procedure, starting from reduced graphene oxide (rGO) as a precursor, shows significantly higher sorption of U(VI), Am(III), and Eu(III) than standard graphene oxides (GOs). Earlier studies revealed the mechanism of radionuclide sorption related to defects in GO sheets. Therefore, explosive thermal exfoliation of graphite oxide was used to prepare rGO with a large number of defects and holes. Defects and holes are additionally introduced by Hummers oxidation of rGO, thus providing an extremely defect-rich material. Analysis of characterization by XPS, TGA, and FTIR shows that dGO oxygen functionalization is predominantly related to defects, such as flake edges and edge atoms of holes, whereas standard GO exhibits oxygen functional groups mostly on the planar surface. The high abundance of defects in dGO results in a 15-fold increase in sorption capacity of U(VI) compared to that in standard Hummers GO. The improved sorption capacity of dGO is related to abundant carboxylic group attached hole edge atoms of GO flakes as revealed by synchrotron-based extended X-ray absorption fine structure (EXAFS) and high-energy resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) spectroscopy.
  •  
4.
  • Boulanger, Nicolas, et al. (författare)
  • High Surface Area "3D Graphene Oxide" for Enhanced Sorption of Radionuclides
  • 2022
  • Ingår i: Advanced Materials Interfaces. - : John Wiley & Sons. - 2196-7350. ; 9:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Here preparation of high surface area activated reduced graphene oxide (arGO) oxidized into a 3D analogue of defect-rich GO (dGO) is reported. Surface oxidation of arGO results in carbon to oxygen ratio C/O = 3.3, similar to the oxidation state of graphene oxide while preserving high BET surface area of about 880 m2 g−1. Analysis of surface oxidized arGO shows high abundance of oxygen functional groups which converts hydrophobic precursor into hydrophilic material. High surface area carbons provide the whole surface for oxidation without the need of intercalation and lattice expansion. Therefore, surface oxidation methods are sufficient to convert the materials into 3D architectures with chemical properties similar to graphene oxide. The "3D graphene oxide" shows high sorption capacity for U(VI) removal in an extraordinary broad interval of pH. Notably, the surface oxidized carbon material has a rigid 3D structure with micropores accessible for penetration of radionuclide ions. Therefore, the bulk "3D GO" can be used as a sorbent directly without dispersing, the step required for GO to make its surface area accessible for pollutants.
  •  
5.
  • Butorin, Sergei, et al. (författare)
  • Effect of carbon content on electronic structure of uranium carbides
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structure of UCx (x = 0.9, 1.0, 1.1, 2.0) was studied by means of x-ray absorption spectroscopy (XAS) at the CK edge and measurements in the high energy resolution fluorescence detection (HERFD) mode at the U M-4 and L-3 edges. The full-relativistic density functional theory calculations taking into account the 5f - 5f Coulomb interaction U and spin-orbit coupling (DFT+U+SOC) were also performed for UCand UC2. While the U L-3 HERFD-XAS spectra of the studied samples reveal little difference, the U M-4 HERFD-XAS spectra show certain sensitivity to the varying carbon content in uranium carbides. The observed gradual changes in the U M-4 HERFD spectra suggest an increase in the C2p-U 5f charge transfer, which is supported by the orbital population analysis in the DFT+U+ SOC calculations, indicating an increase in the U 5f occupancy in UC2 as compared to that in UC. On the other hand, the density of states at the Fermi level were found to be significantly lower in UC2, thus affecting the thermodynamic properties. Both the x-ray spectroscopic data (in particular, the CK XAS measurements) and results of the DFT+U+SOC calculations indicate the importance of taking into account U and SOC for the description of the electronic structure of actinide carbides.
  •  
6.
  • Butorin, Sergei, et al. (författare)
  • X-ray spectroscopic study of chemical state in uranium carbides
  • 2022
  • Ingår i: Journal of Synchrotron Radiation. - : International Union of Crystallography (IUCr). - 0909-0495 .- 1600-5775. ; 29, s. 295-302
  • Tidskriftsartikel (refereegranskat)abstract
    • UC and UMeC2 (Me = Fe, Zr, Mo) carbides were studied by the high-energyresolution fluorescence-detected X-ray absorption (HERFD-XAS) technique at the U M-4 and L-3 edges. Both U M-4 and L-3 HERFD-XAS reveal some differences between UMeC2 and UC; there are differences also between the M-4 and L-3 edge results for both types of carbide in terms of the spectral width and energy position. The observed differences are attributed to the consequences of the U 5f, 6d-4d(3d) hybridization in UMeC2. Calculations of the U M-4 HERFD-XAS spectra were also performed using the Anderson impurity model (AIM). Based on the analysis of the data, the 5f occupancy in the ground state of UC was estimated to be 3.05 electrons. This finding is also supported by the analysis of U N-4,N-5 XAS of UC and by the results of the AIM calculations of the U 4f X-ray photoelectron spectrum of UC.
  •  
7.
  • Gerber, Evgeny, et al. (författare)
  • The missing pieces of the PuO2 nanoparticle puzzle
  • 2020
  • Ingår i: Nanoscale. - : ROYAL SOC CHEMISTRY. - 2040-3364 .- 2040-3372. ; 12:35, s. 18039-18048
  • Tidskriftsartikel (refereegranskat)abstract
    • The nanoscience field often produces results more mystifying than any other discipline. It has been argued that changes in the plutonium dioxide (PuO2) particle size from bulk to nano can have a drastic effect on PuO2 properties. Here we report a full characterization of PuO2 nanoparticles (NPs) at the atomic level and probe their local and electronic structures by a variety of methods available at the synchrotron, including extended X-ray absorption fine structure (EXAFS) at the Pu L-3 edge, X-ray absorption near edge structure (XANES) in high energy resolution fluorescence detection (HERFD) mode at the Pu L-3 and M-4 edges, high energy X-ray scattering (HEXS) and X-ray diffraction (XRD). The particles were synthesized from precursors with different oxidation states of plutonium (III, IV, and V) under various environmentally and waste storage relevant conditions (pH 8 and pH > 10). Our experimental results analyzed with state-of-the-art theoretical approaches demonstrate that well dispersed, crystalline NPs with a size of similar to 2.5 nm in diameter are always formed in spite of diverse chemical conditions. Identical crystal structures and the presence of only the Pu(IV) oxidation state in all NPs, reported here for the first time, indicate that the structure of PuO2 NPs is very similar to that of the bulk PuO2. All methods give complementary information and show that investigated fundamental properties of PuO2 NPs, rather than being exotic, are very similar to those of the bulk PuO2.
  •  
8.
  • Kawde, Anurag, et al. (författare)
  • Photo-electrochemical hydrogen production from neutral phosphate buffer and seawater using micro-structured p-Si photo-electrodes functionalized by solution-based methods
  • 2018
  • Ingår i: Sustainable Energy & Fuels. - : Royal Society of Chemistry (RSC). - 2398-4902. ; 2:10, s. 2215-2223
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar fuels such as H2 generated from sunlight and seawater using earth-abundant materials are expected to be a crucial component of a next generation renewable energy mix. We herein report a systematic analysis of the photo-electrochemical performance of TiO2 coated, microstructured p-Si photoelectrodes (p-Si/TiO2) that were functionalized with CoOx and NiOx for H2 generation. These photocathodes were synthesized from commercial p-Si wafers employing wet chemical methods. In neutral phosphate buffer and standard 1 sun illumination, the p-Si/TiO2/NiOx photoelectrode showed a photocurrent density of 1.48 mA cm2 at zero bias (0 VRHE), which was three times and 15 times better than the photocurrent densities of p-Si/TiO2/CoOx and p-Si/TiO2, respectively. No decline in activity was observed over a five hour test period, yielding a Faradaic efficiency of 96% for H2 production. Based on the electrochemical characterizations and the high energy resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) and emission spectroscopy measurements performed at the Ti Ka1 fluorescence line, the superior performance of the p-Si/TiO2/ NiOx photoelectrode was attributed to improved charge transfer properties induced by the NiOx coating on the protective TiO2 layer, in combination with a higher catalytic activity of NiOx for H2-evolution. Moreover, we report here an excellent photo-electrochemical performance of p-Si/TiO2/NiOx photoelectrode in corrosive artificial seawater (pH 8.4) with an unprecedented photocurrent density of 10 mA cm2 at an applied potential of 0.7 VRHE, and of 20 mA cm2 at 0.9 VRHE. The applied bias photon-to-current conversion efficiency (ABPE) at 0.7 VRHE and 10 mA cm2 was found to be 5.1%
  •  
9.
  • Kuzenkova, Anastasiia S., et al. (författare)
  • New insights into the mechanism of graphene oxide and radionuclideinteraction
  • 2020
  • Ingår i: Carbon. - : Elsevier. - 0008-6223 .- 1873-3891. ; 158, s. 291-302
  • Tidskriftsartikel (refereegranskat)abstract
    • The sorption of U(VI), Am(III)/Eu(III) and Cs(I) radionuclides by graphene oxides (GOs) synthesized byHummers’s, Brodie’s and Tour’s methods was studied through a combination of batch experiments withcharacterization by microscopic and spectroscopic techniques such as X-ray photoelectron spectroscopy(XPS), attenuated total reflection fourier-transform infrared spectroscopy (ATR-FTIR), high-energy resolutionfluorescence detected X-Ray absorption spectroscopy (HERFD-XANES), extended X-ray absorptionfine structure (EXAFS) and high resolution transmission electron microscopy (HRTEM). Remarkablydifferent sorption capacity and affinity of radionuclides was found towards GOs synthesized by Hummers’sand Brodie’s methods reflecting different structure and oxidation state of these materials.Mechanism underlying GO e radionuclide interaction is determined using variety of experimentaltechniques. For the first time it is shown here that GO - radionuclides interaction takes place on the smallholes or vacancy defects in the GO sheets. Mechanism of GO’s interaction with radionuclides wasanalyzed and specific functional groups responsible for this interaction were identified. Therefore, a newstrategy to produce improved materials with high capacity for radionuclides suggests the use perforatedand highly defected GO with a larger proportion of carboxylic functional groups.
  •  
10.
  • Kvashnina, Kristina O., et al. (författare)
  • A Novel Metastable Pentavalent Plutonium Solid Phase on the Pathway from Aqueous Plutonium(VI) to PuO2 Nanoparticles
  • 2019
  • Ingår i: Angewandte Chemie International Edition. - : John Wiley & Sons. - 1433-7851 .- 1521-3773. ; 58:49, s. 17558-17562
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we provide evidence that the formation of PuO2 nanoparticles from oxidized PuVI under alkaline conditions proceeds through the formation of an intermediate PuV solid phase, similar to NH4PuO2CO3, which is stable over a period of several months. For the first time, state‐of‐the‐art experiments at Pu M4 and at L3 absorption edges combined with theoretical calculations unambiguously allow to determine the oxidation state and the local structure of this intermediate phase.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy