SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amrein K) "

Sökning: WFRF:(Amrein K)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Czeiter, Endre, et al. (författare)
  • Blood biomarkers on admission in acute traumatic brain injury : Relations to severity, CT findings and care path in the CENTER-TBI study
  • 2020
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 56
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Serum biomarkers may inform and improve care in traumatic brain injury (TBI). We aimed to correlate serum biomarkers with clinical severity, care path and imaging abnormalities in TBI, and explore their incremental value over clinical characteristics in predicting computed tomographic (CT) abnormalities.METHODS: We analyzed six serum biomarkers (S100B, NSE, GFAP, UCH-L1, NFL and t-tau) obtained <24 h post-injury from 2867 patients with any severity of TBI in the Collaborative European NeuroTrauma Effectiveness Research (CENTER-TBI) Core Study, a prospective, multicenter, cohort study. Univariable and multivariable logistic regression analyses were performed. Discrimination was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals.FINDINGS: All biomarkers scaled with clinical severity and care path (ER only, ward admission, or ICU), and with presence of CT abnormalities. GFAP achieved the highest discrimination for predicting CT abnormalities (AUC 0•89 [95%CI: 0•87-0•90]), with a 99% likelihood of better discriminating CT-positive patients than clinical characteristics used in contemporary decision rules. In patients with mild TBI, GFAP also showed incremental diagnostic value: discrimination increased from 0•84 [95%CI: 0•83-0•86] to 0•89 [95%CI: 0•87-0•90] when GFAP was included. Results were consistent across strata, and injury severity. Combinations of biomarkers did not improve discrimination compared to GFAP alone.INTERPRETATION: Currently available biomarkers reflect injury severity, and serum GFAP, measured within 24 h after injury, outperforms clinical characteristics in predicting CT abnormalities. Our results support the further development of serum GFAP assays towards implementation in clinical practice, for which robust clinical assay platforms are required.FUNDING: CENTER-TBI study was supported by the European Union 7th Framework program (EC grant 602150).
  •  
6.
  • Helmrich, Isabel R. A. Retel, et al. (författare)
  • Incremental prognostic value of acute serum biomarkers for functional outcome after traumatic brain injury (CENTER-TBI) : an observational cohort study
  • 2022
  • Ingår i: Lancet Neurology. - : The Lancet Publishing Group. - 1474-4422 .- 1474-4465. ; 21:9, s. 792-802
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Several studies have reported an association between serum biomarker values and functional outcome following traumatic brain injury. We aimed to examine the incremental (added) prognostic value of serum biomarkers over demographic, clinical, and radiological characteristics and over established prognostic models, such as IMPACT and CRASH, for prediction of functional outcome.METHODS: We used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core study. We included patients aged 14 years or older who had blood sampling within 24 h of injury, results from a CT scan, and outcome assessment according to the Glasgow Outcome Scale-Extended (GOSE) at 6 months. Amounts in serum of six biomarkers (S100 calcium-binding protein B, neuron-specific enolase, glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1 [UCH-L1], neurofilament protein-light, and total tau) were measured. The incremental prognostic value of these biomarkers was determined separately and in combination. The primary outcome was the GOSE 6 months after injury. Incremental prognostic value, using proportional odds and a dichotomised analysis, was assessed by delta C-statistic and delta R2 between models with and without serum biomarkers, corrected for optimism with a bootstrapping procedure.FINDINGS: Serum biomarker values and 6-month GOSE were available for 2283 of 4509 patients. Higher biomarker levels were associated with worse outcome. Adding biomarkers improved the C-statistic by 0·014 (95% CI 0·009-0·020) and R2 by 4·9% (3·6-6·5) for predicting GOSE compared with demographic, clinical, and radiological characteristics. UCH-L1 had the greatest incremental prognostic value. Adding biomarkers to established prognostic models resulted in a relative increase in R2 of 48-65% for IMPACT and 30-34% for CRASH prognostic models.INTERPRETATION: Serum biomarkers have incremental prognostic value for functional outcome after traumatic brain injury. Our findings support integration of biomarkers-particularly UCH-L1-in established prognostic models.
  •  
7.
  • Mondello, Stefania, et al. (författare)
  • Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury : A living systematic review and meta-analysis
  • 2021
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 38:8, s. 1086-1106
  • Forskningsöversikt (refereegranskat)abstract
    • Accurate diagnosis of traumatic brain injury (TBI) is critical to effective management and intervention, but can be challenging in patients with mild TBI. A substantial number of studies have reported the use of circulating biomarkers as signatures for TBI, capable of improving diagnostic accuracy and clinical decision making beyond current practice standards. We performed a systematic review and meta-analysis to comprehensively and critically evaluate the existing body of evidence for the use of blood protein biomarkers (S100 calcium binding protein B [S100B], glial fibrillary acidic protein [GFAP], neuron specific enolase [NSE], ubiquitin C-terminal hydrolase-L1 [UCH-L1]. tau, and neurofilament proteins) for diagnosis of intracranial lesions on CT following mild TBI. Effects of potential confounding factors and differential diagnostic performance of the included markers were explored. Further, appropriateness of study design, analysis, quality, and demonstration of clinical utility were assessed. Studies published up to October 2016 were identified through searches of MEDLINE®, Embase, EBM Reviews, the Cochrane Library, World Health Organization (WHO), International Clinical Trials Registry Platform (ICTRP), and clinicaltrials.gov. Following screening of the identified articles, 26 were selected as relevant. We found that measurement of S100B can help informed decision making in the emergency department, possibly reducing resource use; however, there is insufficient evidence that any of the other markers is ready for clinical application. Our work pointed out serious problems in the design, analysis, and reporting of many of the studies, and identified substantial heterogeneity and research gaps. These findings emphasize the importance of methodologically rigorous studies focused on a biomarker's intended use, and defining standardized, validated, and reproducible approaches. The living nature of this systematic review, which will summarize key updated information as it becomes available, can inform and guide future implementation of biomarkers in the clinical arena. 
  •  
8.
  • Whitehouse, Daniel P., et al. (författare)
  • Relationship of admission blood proteomic biomarkers levels to lesion type and lesion burden in traumatic brain injury : A CENTER-TBI study
  • 2022
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 75
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to understand the relationship between serum biomarker concentration and lesion type and volume found on computed tomography (CT) following all severities of TBI.Methods: Concentrations of six serum biomarkers (GFAP, NFL, NSE, S100B, t-tau and UCH-L1) were measured in samples obtained <24 hours post-injury from 2869 patients with all severities of TBI, enrolled in the CENTER-TBI prospective cohort study (NCT02210221). Imaging phenotypes were defined as intraparenchymal haemorrhage (IPH), oedema, subdural haematoma (SDH), extradural haematoma (EDH), traumatic subarachnoid haemorrhage (tSAH), diffuse axonal injury (DAI), and intraventricular haemorrhage (IVH). Multivariable polynomial regression was performed to examine the association between biomarker levels and both distinct lesion types and lesion volumes. Hierarchical clustering was used to explore imaging phenotypes; and principal component analysis and k-means clustering of acute biomarker concentrations to explore patterns of biomarker clustering.Findings: 2869 patient were included, 68% (n=1946) male with a median age of 49 years (range 2-96). All severities of TBI (mild, moderate and severe) were included for analysis with majority (n=1946, 68%) having a mild injury (GCS 13-15). Patients with severe diffuse injury (Marshall III/IV) showed significantly higher levels of all measured biomarkers, with the exception of NFL, than patients with focal mass lesions (Marshall grades V/VI). Patients with either DAI+IVH or SDH+IPH+tSAH, had significantly higher biomarker concentrations than patients with EDH. Higher biomarker concentrations were associated with greater volume of IPH (GFAP, S100B, t-tau;adj r2 range:0·48-0·49; p<0·05), oedema (GFAP, NFL, NSE, t-tau, UCH-L1;adj r2 range:0·44-0·44; p<0·01), IVH (S100B;adj r2 range:0.48-0.49; p<0.05), Unsupervised k-means biomarker clustering revealed two clusters explaining 83·9% of variance, with phenotyping characteristics related to clinical injury severity.Interpretation: Interpretation: Biomarker concentration within 24 hours of TBI is primarily related to severity of injury and intracranial disease burden, rather than pathoanatomical type of injury.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy