SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amsellem Frederique) "

Sökning: WFRF:(Amsellem Frederique)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beggiato, Anita, et al. (författare)
  • Gender differences in autism spectrum disorders: Divergence among specific core symptoms.
  • 2017
  • Ingår i: Autism research : official journal of the International Society for Autism Research. - : Wiley. - 1939-3806 .- 1939-3792. ; 10:4, s. 680-689
  • Tidskriftsartikel (refereegranskat)abstract
    • Community-based studies have consistently shown a sex ratio heavily skewed towards males in autism spectrum disorders (ASD). The factors underlying this predominance of males are largely unknown, but the way girls score on standardized categorical diagnostic tools might account for the underrecognition of ASD in girls. Despite the existence of different norms for boys and girls with ASD on several major screening tests, the algorithm of the Autism Diagnosis Interview-Revised (ADI-R) has not been reformulated. The aim of our study was to investigate which ADI-R items discriminate between males and females, and to evaluate their weighting in the final diagnosis of autism. We then conducted discriminant analysis (DA) on a sample of 594 probands including 129 females with ASD, recruited by the Paris Autism Research International Sibpair (PARIS) Study. A replication analysis was run on an independent sample of 1716 probands including 338 females with ASD, recruited through the Autism Genetics Resource Exchange (AGRE) program. Entering the raw scores for all ADI-R items as independent variables, the DA correctly classified 78.9% of males and 72.9% of females (P<0.001) in the PARIS cohort, and 72.2% of males and 68.3% of females (P<0.0001) in the AGRE cohort. Among the items extracted by the stepwise DA, four belonged to the ADI-R algorithm used for the final diagnosis of ASD. In conclusion, several items of the ADI-R that are taken into account in the diagnosis of autism significantly differentiates between males and females. The potential gender bias thus induced may participate in the underestimation of the prevalence of ASD in females. Autism Res 2016,. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
  •  
2.
  • Konyukh, Marina, et al. (författare)
  • Variations of the candidate SEZ6L2 gene on Chromosome 16p11.2 in patients with autism spectrum disorders and in human populations.
  • 2011
  • Ingår i: PLoS One. - : Public Library of Science (PLoS). - 1932-6203. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Autism spectrum disorders (ASD) are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2. The analysis of rare variations of 8 candidate genes among the 27 genes located in this region suggested SEZ6L2 as a compelling candidate. Methodology/Principal Findings We further explored the role of SEZ6L2 variations by screening its coding part in a group of 452 individuals, including 170 patients with ASD and 282 individuals from different ethnic backgrounds of the Human Genome Diversity Panel (HGDP), complementing the previously reported screening. We detected 7 previously unidentified non-synonymous variations of SEZ6L2 in ASD patients. We also identified 6 non-synonymous variations present only in HGDP. When we merged our results with the previously published, no enrichment of non-synonymous variation in SEZ6L2 was observed in the ASD group compared with controls. Conclusions/Significance Our results provide an extensive ascertainment of the genetic variability of SEZ6L2 in human populations and do not support a major role for SEZ6L2 sequence variations in the susceptibility to ASD.
  •  
3.
  • Leblond, Claire S, et al. (författare)
  • Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments.
  • 2014
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.
  •  
4.
  • Maruani, Anna, et al. (författare)
  • 11q24.2-25 micro-rearrangements in autism spectrum disorders: Relation to brain structures
  • 2015
  • Ingår i: American Journal of Medical Genetics. Part A. - : Wiley. - 1552-4825 .- 1552-4833. ; 167:12, s. 3019-3030
  • Tidskriftsartikel (refereegranskat)abstract
    • Jacobsen syndrome (JS) is characterized by intellectual disability and higher risk for autism spectrum disorders (ASD). All patients with JS are carriers of contiguous de novo deletions of 11q24.2-25, but the causative genes remain unknown. Within the critical interval, we hypothesized that haploinsufficiency of the neuronal cell adhesion molecule Neurotrimin (NTM) might increase the risk for ASD and could affect brain structure volumes. We searched for deleterious mutations affecting NTM in 1256 ASD patients and 1287 controls, using SNP arrays, and by direct sequencing of 250 ASD patients and 180 controls. We compared our results to those obtained from independent cohorts of ASD patients and controls. We identified two patients with Copy Number Variants (CNV) encompassing NTM, one with a large de novo deletion, and a clinical phenotype of JS (including macrocephaly), and a second with a paternally inherited duplication, not consistent with JS. Interestingly, no similar CNVs were observed in controls. We did not observe enrichment for deleterious NTM mutations in our cohort. We then explored if the macrocephaly in the patient with JS was associated with a homogeneous increase of brain structures volumes using automatic segmentation. Compared to subjects without NTM micro-rearrangements (n=188), the patient had an increased volume of the sub-cortical structures but a decrease of the occipital gray matter. Finally our explorations could not incriminate NTM as a susceptibility gene for ASD, but provides new information on the impact of the 11q24.2-25 deletion on brain anatomy. © 2015 Wiley Periodicals, Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy