SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(An Zwijsen) "

Sökning: WFRF:(An Zwijsen)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Annelies, Nonneman, et al. (författare)
  • Astrocyte-derived Jagged-1 mitigates deleterious Notch signaling in amyotrophic lateral sclerosis
  • 2018
  • Ingår i: Neurobiology of Disease. - : Academic Press. - 0969-9961 .- 1095-953X. ; 119, s. 26-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a late-onset devastating degenerative disease mainly affecting motor neurons. Motor neuron degeneration is accompanied and aggravated by oligodendroglial pathology and the presence of reactive astrocytes and microglia. We studied the role of the Notch signaling pathway in ALS, as it is implicated in several processes that may contribute to this disease, including axonal retraction, microgliosis, astrocytosis, oligodendrocyte precursor cell proliferation and differentiation, and cell death. We observed abnormal activation of the Notch signaling pathway in the spinal cord of SOD1(G93A) mice, a well-established model for ALS, as well as in the spinal cord of patients with sporadic ALS (sALS). This increased activation was particularly evident in reactive GFAP-positive astrocytes. In addition, one of the main Notch ligands, Jagged-1, was ectopically expressed in reactive astrocytes in spinal cord from ALS mice and patients, but absent in resting astrocytes. Astrocyte-specific inactivation of Jagged-1 in presymptomatic SOD1(G93A) mice further exacerbated the activation of the Notch signaling pathway and aggravated the course of the disease in these animals without affecting disease onset. These data suggest that aberrant Notch signaling activation contributes to the pathogenesis of ALS, both in sALS patients and SOD1(G93A) mice, and that it is mitigated in part by the upregulation of astrocytic Jagged-1.
  •  
2.
  • Richter, Anne, et al. (författare)
  • EGFL7 Mediates BMP9-Induced Sprouting Angiogenesis of Endothelial Cells Derived from Human Embryonic Stem Cells
  • 2019
  • Ingår i: Stem Cell Reports. - : Elsevier BV. - 2213-6711. ; 12:6, s. 1250-1259
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic stem cells (hESCs) are instrumental in characterizing the molecular mechanisms of human vascular development and disease. Bone morphogenetic proteins (BMPs) play a pivotal role in cardiovascular development in mice, but their importance for vascular cells derived from hESCs has not yet been fully explored. Here, we demonstrate that BMP9 promotes, via its receptor ALK1 and SMAD1/5 activation, sprouting angiogenesis of hESC-derived endothelial cells. We show that the secreted angiogenic factor epidermal growth factor-like domain 7 (EGFL7) is a downstream target of BMP9-SMAD1/5-mediated signaling, and that EGFL7 promotes expansion of endothelium via interference with NOTCH signaling, activation of ERK, and remodeling of the extracellular matrix. CRISPR/Cas9-mediated deletion of EGFL7 highlights the critical role of EGFL7 in BMP9-induced endothelial sprouting and the promotion of angiogenesis. Our study illustrates the complex role of the BMP family in orchestrating hESC vascular development and endothelial sprouting.
  •  
3.
  • Singbrant, Sofie, et al. (författare)
  • Smad5 is dispensable for adult murine hematopoiesis.
  • 2006
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 108:12, s. 3707-3712
  • Tidskriftsartikel (refereegranskat)abstract
    • Smad5 is known to transduce intracellular signals from bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-beta (TGF-beta) superfamily and are involved in the regulation of hematopoiesis. Recent findings suggest that BMP4 stimulates proliferation of human primitive hematopoietic progenitors in vitro, while early progenitors from mice deficient in Smad5 display increased self-renewal capacity in murine embryonic hematopoiesis. Here, we evaluate the role of Smad5 in the regulation of hematopoietic stem cell (HSC) fate decisions in adult mice by using an inducible MxCre-mediated conditional knockout model. Surprisingly, analysis of induced animals revealed unperturbed cell numbers and lineage distribution in peripheral blood (PB), bone marrow (BM), and the spleen. Furthermore, phenotypic characterization of the stem cell compartment revealed normal numbers of primitive lin(-)Sca-1(+)c-Kit(+) (LSK) cells in Smad5(-/-) BM. When transplanted in a competitive fashion into lethally irradiated primary and secondary recipients, Smad5-deficient BM cells competed normally with wild-type (wt) cells, were able to provide long-term reconstitution for the hosts, and displayed normal lineage distribution. Taken together, Smad5-deficient HSCs from adult mice show unaltered differentiation, proliferation, and repopulating capacity. Therefore, in contrast to its role in embryonic hematopoiesis, Smad5 is dispensable for hematopoiesis in the adult mouse.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy