SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Erik P. 1984 ) "

Sökning: WFRF:(Andersson Erik P. 1984 )

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
4.
  •  
5.
  •  
6.
  • Andersson, Erik P., 1984-, et al. (författare)
  • Physiological responses and cycle characteristics during double-poling versus diagonal-stride roller-skiing in junior cross-country skiers
  • 2021
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 121:8, s. 2229-2241
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods: Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results: No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake (V˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion: In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher V˙ O2peak values when using DS compared to DP. 
  •  
7.
  • Andersson, Erik P., 1984-, et al. (författare)
  • Anaerobic work capacity in cycling : the effect of computational method
  • 2022
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 122, s. 2637-2650
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose To compare the anaerobic work capacity (AnWC, i.e., attributable anaerobic mechanical work) assessed using four different approaches/models applied to time-trial (TT) cycle-ergometry exercise. Methods Fifteen male cyclists completed a 7 x 4-min submaximal protocol and a 3-min all-out TT (TTAO). Linear relationships between power output (PO) and submaximal metabolic rate were constructed to estimate TT-specific gross efficiency (GE) and AnWC, using either a measured resting metabolic rate as a Y-intercept (7 + Y-LIN) or no measured Y-intercept (7-Y-LIN). In addition, GE of the last submaximal bout (GE(LAST)) was used to estimate AnWC, and critical power (CP) from TTAO (CP3'AO) was used to estimate mechanical work above CP (W', i.e., "AnWC"). Results Average PO during TTAO was 5.43 +/- 0.30 and CP was 4.48 +/- 0.23 W.kg(-1). The TT-associated GE values were similar to 22.0% for both 7 + Y-LIN and 7-Y-LIN and similar to 21.1% for GE(LAST) (both P < 0.001). The AnWC were 269 +/- 60, 272 +/- 55, 299 +/- 61, and 196 +/- 52 J.kg(-1) for the 7 + Y-LIN, 7 Y-LIN, GE(LAST), and CP3'AO models, respectively (7 + Y-LIN and 7-Y-LIN versus GE(LAST), both P <0.001; 7+ Y-LIN, 7 Y-LIN, and GE(LAST) versus CP3'AO, all P < 0.01). For the three pair-wise comparisons between 7+ Y-LIN, 7-Y-LIN, and GE(LAST), typical errors in AnWC values ranged from 7 to 11 J.kg(-1), whereas 7+ Y-LIN, 7-Y-LIN, and GE(LAST) versus CP3'AO revealed typical errors of 55-59 J.kg(-1). Conclusion These findings demonstrate a substantial disagreement in AnWC between CP3'AO and the other models. The 7 + Y-LIN and 7-Y-LIN generated 10% lower AnWC values than the GE(LAST) model, whereas 7 + Y-LIN and 7-Y-LIN generated similar values of AnWC.
  •  
8.
  • Andersson, Erik P., 1984-, et al. (författare)
  • Physiological responses and performance factors for double-poling and diagonal-stride treadmill roller-skiing time-trial exercise
  • 2023
  • Ingår i: European Journal of Applied Physiology. - : Springer. - 1439-6319 .- 1439-6327. ; 123:11, s. 2495-2509
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To compare physiological responses between a self-paced 4-min double-poling (DP) time-trial (TTDP) versus a 4-min diagonal-stride (DS) time-trial (TTDS). The relative importance of peak oxygen uptake (V ˙ O2peak), anaerobic capacity, and gross efficiency (GE) for projection of 4-min TTDP and TTDS roller-skiing performances were also examined. Methods: Sixteen highly trained male cross-country skiers performed, in each sub-technique on separate occasions, an 8 × 4-min incremental submaximal protocol, to assess individual metabolic rate (MR) versus power output (PO) relationships, followed by a 10-min passive break and then the TTDP or TTDS, with a randomized order between sub-techniques. Results: In comparison to TTDS, the TTDP resulted in 10 ± 7% lower total MR, 5 ± 4% lower aerobic MR, 30 ± 37% lower anaerobic MR, and 4.7 ± 1.2 percentage points lower GE, which resulted in a 32 ± 4% lower PO (all P < 0.01). The V ˙ O2peak and anaerobic capacity were 4 ± 4% and 30 ± 37% lower, respectively, in DP than DS (both P < 0.01). The PO for the two time-trial (TT) performances were not significantly correlated (R 2 = 0.044). Similar parabolic pacing strategies were used during both TTs. Multivariate data analysis projected TT performance using V ˙ O2peak, anaerobic capacity, and GE (TTDP, R 2 = 0.974; TTDS, R 2 = 0.848). The variable influence on projection values for V ˙ O2peak, anaerobic capacity, and GE were for TTDP, 1.12 ± 0.60, 1.01 ± 0.72, and 0.83 ± 0.38, respectively, and TTDS, 1.22 ± 0.35, 0.93 ± 0.44, and 0.75 ± 0.19, respectively. Conclusions: The results show that a cross-country skier’s “metabolic profile” and performance capability are highly sub-technique specific and that 4-min TT performance is differentiated by physiological factors, such as V ˙ O2peak, anaerobic capacity, and GE. 
  •  
9.
  • Andersson, Erik P., 1984-, et al. (författare)
  • Sex differences in performance and pacing strategies during a sprint time-trial in cross-country skiing
  • 2018
  • Konferensbidrag (refereegranskat)abstract
    • INTRODUCTION: The aim of this study was to compare the pacing strategies, choice of sub-technique (i.e., gear) and overall performance between elite male and female cross-country (XC) skiers during a ski-skating sprint time-trial (TT) on snow.METHODS: Thirty-four elite XC skiers (20 males and 14 females: age, 23 ± 4 and 21 ± 3 yr; body mass, 76 ± 8 and 64 ± 5 kg; height, 183 ± 7 and 171 ± 5 cm; sprint FIS points, 86 ± 42 and 90 ± 54) performed a 1.6 km TT, which was 56% flat (or undulating), 21% uphill and 22% downhill. The sprint course was measured with a differential global navigation satellite system and divided into four flat, three uphill and two downhill sections. Race time was measured with the EMIT timing system (Emit AS, Oslo, Norway) and one 25-m uphill (4°) section was filmed continuously with a fixed camcorder (50 Hz). All skiers used a similar stone-grind and all skis were glide-waxed similarly. The air temperature was +1°C (fresh snow at ±0°C), relative humidity was 90% and the friction coefficient between ski and snow was estimated to 0.045 (i.e., very slow).RESULTS: Average speed during the TT was 25 ± 1 and 22 ± 1 km/h (TT time: 227 ± 11 and 254 ± 10 s) for males and females, respectively (P < 0.001, Cohen’s d effect size [ES] = 2.6). Average relative power output (PO) was estimated to 3.9 ± 0.3 and 3.3 ± 0.2 W/kg for males and females, respectively (P < 0.001, ES = 2.5). Average heart rate was 95 ± 2% and 96 ± 1% of maximum for males and females (P = 0.51), with a 2-min post-race blood lactate concentration of 10 ± 2 mmol/L for both sexes (P = 0.64). Within-athlete coefficient of variation in speed between sections was 20 ± 2% for males and 24 ± 1% for females (P < 0.001, ES = 2.6). Speeds on the flat, uphill and downhill sections were 26 ± 1, 19 ± 1 and 32 ± 1 km/h for males and 23 ± 1, 16 ± 1 and 30 ± 1 km/h for females (main effects for terrain, sex and interaction, all P < 0.01) corresponding to 9%, 16% and 8% slower speeds on flat, uphill and downhill terrain for females. Speeds relative to the average TT speed were 103 ± 1%, 77 ± 2% and 129 ± 4% for males and 105 ± 1%, 72 ± 2% and 133 ± 2% for females (main effects for terrain, sex and interaction, all P < 0.001). Relative PO on the flat, uphill and downhill sections were estimated to 4.0 ± 0.3, 4.9 ± 0.4 and 1.9 ± 0.2 W/kg for males and 3.5 ± 0.2, 4.0 ± 0.3 and 1.5 ± 0.2 W/kg for females (main effects for terrain, sex and interaction, all P < 0.001). The males were 20% faster than the females on the uphill video section (16 ± 1 versus 13 ± 1 km/h, P < 0.001, ES = 2.6), with 95% of the male skiers and 21% of the female skiers using gear 3 exclusively, and the remaining skiers using gear 2 exclusively or a combination of gears 2 and 3.CONCLUSION: The present results indicate an overall sex difference in sprint skiing performance of ~12% and reveal differences in terrain-specific pacing as well as gear choice between sexes with females showing a higher overall variation in speed and considerably slower uphill skiing.
  •  
10.
  • Andersson, Erik P., 1984-, et al. (författare)
  • The Anaerobic Capacity of Cross-Country Skiers : The Effect of Computational Method and Skiing Sub-technique
  • 2020
  • Ingår i: Frontiers in Sports and Active Living. - : Frontiers Media SA. - 2624-9367. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Anaerobic capacity is an important performance-determining variable of sprint cross-country skiing. Nevertheless, to date, no study has directly compared the anaerobic capacity, determined using the maximal accumulated oxygen deficit (MAOD) method and gross efficiency (GE) method, while using different skiing sub-techniques.Purpose: To compare the anaerobic capacity assessed using two different MAOD approaches (including and excluding a measured y-intercept) and the GE method during double poling (DP) and diagonal stride (DS) cross-country skiing.Methods: After an initial familiarization trial, 16 well-trained male cross-country skiers performed, in each sub-technique on separate occasions, a submaximal protocol consisting of eight 4-min bouts at intensities between ~47–78% of V.V.O2peak followed by a 4-min roller-skiing time trial, with the order of sub-technique being randomized. Linear and polynomial speed-metabolic rate relationships were constructed for both sub-techniques, while using a measured y-intercept (8+YLIN and 8+YPOL) or not (8–YLIN and 8–YPOL), to determine the anaerobic capacity using the MAOD method. The average GE (GEAVG) of all eight submaximal exercise bouts or the GE of the last submaximal exercise bout (GELAST) were used to calculate the anaerobic capacity using the GE method. Repeated measures ANOVA were used to test differences in anaerobic capacity between methods/approaches.Results: A significant interaction was found between computational method and skiing sub-technique (P < 0.001, η2 = 0.51) for the anaerobic capacity estimates. The different methodologies resulted in significantly different anaerobic capacity values in DP (P < 0.001, η2 = 0.74) and in DS (P = 0.016, η2 = 0.27). The 8-YPOL model resulted in the smallest standard error of the estimate (SEE, 0.24 W·kg−1) of the MAOD methods in DP, while the 8-YLIN resulted in a smaller SEE value than the 8+YLIN model (0.17 vs. 0.33 W·kg−1) in DS. The 8-YLIN and GELAST resulted in the closest agreement in anaerobic capacity values in DS (typical error 2.1 mL O2eq·kg−1).Conclusions: It is discouraged to use the same method to estimate the anaerobic capacity in DP and DS sub-techniques. In DP, a polynomial MAOD method (8-YPOL) seems to be the preferred method, whereas the 8-YLIN, GEAVG, and GELAST can all be used for DS, but not interchangeable, with GELAST being the least time-consuming method.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy